which has examined the impact that the rapid growth of Phoenix's metropolitan area has had on urban ecosystems. He observed that the initiative, which is comparable to the Baltimore ecological resiliency project, has built excellent models for projecting trends in water, air, transport and land use. Yet, he cautioned, it has been less successful in integrating the data and insights into a fully drawn portrait of the future of the city. Universities, he observed, are not the only institutions handcuffed by traditional silos of information. Government agencies often find themselves constrained by similar circumstances.

The Phoenix project is part of a larger effort by the NSF to fund long-term ecological research (LTER). But as Fink noted, only two of LTER’s 26 projects have taken place in urban environments: in Phoenix and Baltimore.

Clearly, the NSF's ecological research agenda does not place the same weight on built environments as it does on natural environments (although because of demographic trends, several LTER projects have seen exurbs and suburbs encroach on their study areas). Nevertheless, farmland, forests and parks have traditionally been considered a more integral part of the environment than cities.

This will have to change if urban sustainability is to become a major aspect of ecological research in federal agencies. As the USDA's Bartuska noted, there may be more to the concept of 'eco-cities' than the current perceptions of the 'steel, glass and cement' would suggest. She noted that of the 193 million acres of forest managed by the federal government, 80 million acres are located in urban areas. That's more than 40% of the total.

Fink also pointed to the recently launched Global Cities Indicators Facility project, located at the University of Toronto and funded by the World Bank. The project is designed to encourage cities worldwide to collect "the same kind of data in the same way" and to "place their data all in one place." The ultimate objective is to facilitate access to urban research on global urban issues in ways that make comparisons easier to discuss and analyze.

It is a worthy goal, Fink said, that could go a long way to helping establish base lines that will be crucial for assessing trends in urban sustainability. Indeed research-based evidence, many participants noted, represents our best hope for changing minds and changing policies.

Between 1973 and 1998, Atlanta’s 13 county metropolitan regions witnessed the destruction of an estimated 55 acres of forest each day, resulting in a cumulative loss of 280,000 acres of vegetation during a quarter century of unprecedented growth. As Dale Quattrochi, a Geographer and Senior Research Scientist, Earth Science Office at the National Aeronautic and Space Administration (NASA), described it: One of America's premier Southern cities experienced a period of suburban "slash and burn."

As was the case in Phoenix, explosive population growth and the associated construction frenzy in Atlanta fueled an urban heat island effect in which temperatures in the city and even some suburbs far exceeded temperatures in the open areas lying at the periphery.

"We all know that cities are hot; nothing new here," Quattrochi said. But we may not be fully aware of how hot they stay once the sun sets. Detailed weather surveys indicate that two to three hours after sunset summer time temperatures in the center of Atlanta often remain 3 to 10 degrees F higher than in the outlying districts. Simply put,



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement