image

Fig. 2.

image

Fig. 3.

VII. HEAT PROBLEM

Will it be possible to remove the heat generated by tens of thousands of components in a single silicon chip?

If we could shrink the volume of a standard high-speed digital computer to that required for the components themselves, we would expect it to glow brightly with present power dissipation. But it won’t happen with integrated circuits. Since integrated electronic structures are two dimensional, they have a surface available for cooling close to each center of heat generation. In addition, power is needed primarily to drive the various lines and capacitances associated with the system. As long as a function is confined to a small area on a wafer, the amount of capacitance which must be driven is distinctly limited. In fact, shrinking dimensions on an integrated structure makes it possible to operate the structure at higher speed for the same power per unit area.

VIII. DAY OF RECKONING

Clearly, we will be able to build such component-crammed equipment. Next, we ask under what circumstances we should do it. The total cost of making a particular system function must be minimized. To do so, we could amortize the engineering over several identical items, or evolve flexible techniques for the engineering of large functions so that no disproportionate expense need be borne by a particular array. Perhaps newly devised design automation procedures could translate from logic diagram to technological realization without any special engineering.

It may prove to be more economical to build large systems out of smaller functions, which are separately packaged and interconnected. The availability of large functions, combined with functional design and construction, should allow the manufacturer of large systems to design and construct a considerable variety of equipment both rapidly and economically.

IX. LINEAR CIRCUITRY

Integration will not change linear systems as radically as digital systems. Still, a considerable degree of integration will be achieved with linear circuits. The lack of large-value capacitors and inductors is the greatest fundamental limitation to integrated electronics in the linear area.

By their very nature, such elements require the storage of energy in a volume. For high Q it is necessary that the volume be large. The incompatibility of large volume and integrated electronics is obvious from the terms themselves. Certain resonance phenomena, such as those in piezoelectric crystals, can be expected to have some applications for tuning functions, but inductors and capacitors will be with us for some time.

The integrated RF amplifier of the future might well consist of integrated stages of gain, giving high performance at minimum cost, interspersed with relatively large tuning elements.

Other linear functions will be changed considerably. The matching and tracking of similar components in integrated structures will allow the design of differential amplifiers of greatly improved performance. The use of thermal feedback effects to stabilize integrated structures to a small fraction of a degree will allow the construction of oscillators with crystal stability.

Even in the microwave area, structures included in the definition of integrated electronics will become increasingly important. The ability to make and assemble components small compared with the wavelengths involved will allow the use of lumped parameter design, at least at the lower frequencies. It is difficult to predict at the present time just how extensive the invasion of the microwave area by integrated electronics will be. The successful realization of such items as phased-array antennas, for example, using a multiplicity of integrated microwave power sources, could completely revolutionize radar.



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement