National Academies Press: OpenBook

Expanding Underrepresented Minority Participation: America's Science and Technology Talent at the Crossroads (2011)

Chapter: Appendix E: Recommendations on STEM Education from *Rising Above the Gathering Storm*

« Previous: Appendix D: Agendas for Public Meetings
Suggested Citation:"Appendix E: Recommendations on STEM Education from *Rising Above the Gathering Storm*." National Academy of Sciences, National Academy of Engineering, and Institute of Medicine. 2011. Expanding Underrepresented Minority Participation: America's Science and Technology Talent at the Crossroads. Washington, DC: The National Academies Press. doi: 10.17226/12984.
×

Appendix E
Recommendations on STEM Education from Rising Above the Gathering Storm

10,000 TEACHERS, 10 MILLION MINDS, AND K–12 SCIENCE AND MATHEMATICS EDUCATION

Recommendation A:
Increase America’s talent pool by vastly improving K–12 science and mathematics education.
Implementation Actions

The highest priority should be assigned to the following actions and programs. All should be subjected to continuing evaluation and refinement as they are implemented.


Action A-1: Annually recruit 10,000 science and mathematics teachers by awarding 4-year scholarships and thereby educating 10 million minds.


Attract 10,000 of America’s brightest students to the teaching profession every year, each of whom can have an impact on 1,000 students over the course of their careers. The program would award competitive 4-year scholarships for students to obtain bachelor’s degrees in the physical or life sciences, engineering, or mathematics with concurrent certification as K–12 science and mathematics teachers. The merit-based scholarships would provide up to $20,000 a year for 4 years for qualified educational expenses, including tuition and fees, and require a commitment to 5 years of service in public K–12 schools. A $10,000 annual bonus would go to participating

Suggested Citation:"Appendix E: Recommendations on STEM Education from *Rising Above the Gathering Storm*." National Academy of Sciences, National Academy of Engineering, and Institute of Medicine. 2011. Expanding Underrepresented Minority Participation: America's Science and Technology Talent at the Crossroads. Washington, DC: The National Academies Press. doi: 10.17226/12984.
×

teachers in underserved schools in inner cities and rural areas. To provide the highest-quality education for undergraduates who want to become teachers, it would be important to award matching grants, on a one-to-one basis, of $1 million a year for up to 5 years, to as many as 100 universities and colleges to encourage them to establish integrated 4-year undergraduate programs leading to bachelor’s degrees in the physical and life sciences, mathematics, computer sciences, or engineering with teacher certification. The models for this action are the UTeach and California Teach program.


Action A-2: Strengthen the skills of 250,000 teachers through training and education programs at summer institutes, in master’s programs, and in Advanced Placement (AP) and International Baccalaureate (IB) training programs.


Use proven models to strengthen the skills (and compensation, which is based on education and skill level) of 250,000 current K–12 teachers.

  • Summer institutes: Provide matching grants to state and regional 1- to 2-week summer institutes to upgrade the skills and state-of-the-art knowledge of as many as 50,000 practicing teachers each summer. The material covered would allow teachers to keep current with recent developments in science, mathematics, and technology and allow for the exchange of best teaching practices. The Merck Institute for Science Education is one model for this action.

  • Science and mathematics master’s programs: Provide grants to research universities to offer, over 5 years, 50,000 current middle school and high school science, mathematics, and technology teachers (with or without undergraduate science, mathematics, or engineering degrees) 2-year, part-time master’s degree programs that focus on rigorous science and mathematics content and pedagogy. The model for this action is the University of Pennsylvania Science Teacher Institute.

  • AP, IB, and pre-AP or pre-IB training: Train an additional 70,000 AP or IB and 80,000 pre-AP or pre-IB instructors to teach advanced courses in science and mathematics. Assuming satisfactory performance, teachers may receive incentive payments of $1,800 per year, as well as $100 for each student who passes an AP or IB exam in mathematics or science. There are two models for this program: the Advanced Placement Incentive Program and Laying the Foundation, a pre-AP program.

  • K–12 curriculum materials modeled on a world-class standard: Foster high-quality teaching with world-class curricula, standards, and

Suggested Citation:"Appendix E: Recommendations on STEM Education from *Rising Above the Gathering Storm*." National Academy of Sciences, National Academy of Engineering, and Institute of Medicine. 2011. Expanding Underrepresented Minority Participation: America's Science and Technology Talent at the Crossroads. Washington, DC: The National Academies Press. doi: 10.17226/12984.
×

assessments of student learning. Convene a national panel to collect, evaluate, and develop rigorous K–12 materials that would be available free of charge as a voluntary national curriculum. The model for this action is the Project Lead the Way pre-engineering courseware.

Action A-3: Enlarge the pipeline of students who are prepared to enter college and graduate with a degree in science, engineering, or mathematics by increasing the number of students who pass AP and IB science and mathematics courses.


Create opportunities and incentives for middle school and high school students to pursue advanced work in science and mathematics. By 2010, increase the number of students who take at least one AP or IB mathematics or science exam to 1.5 million and set a goal of tripling the number who pass those tests to 700,000. Student incentives for success would include 50 percent examination fee rebates and $100 mini-scholarships for each passing score on an AP or IB science or mathematics examination. Although it is not included among the implementation actions, the committee also finds attractive the expansion of two approaches to improving K–12 science and mathematics education that are already in use:

  • Statewide specialty high schools: Specialty secondary education can foster leaders in science, technology, and mathematics. Specialty schools immerse students in high-quality science, technology, and mathematics education; serve as a mechanism to test teaching materials; provide a training ground for K–12 teachers; and provide the resources and staff for summer programs that introduce students to science and mathematics.

  • Inquiry-based learning: Summer internships and research opportunities provide especially valuable laboratory experience for both middle school and high school students.

Suggested Citation:"Appendix E: Recommendations on STEM Education from *Rising Above the Gathering Storm*." National Academy of Sciences, National Academy of Engineering, and Institute of Medicine. 2011. Expanding Underrepresented Minority Participation: America's Science and Technology Talent at the Crossroads. Washington, DC: The National Academies Press. doi: 10.17226/12984.
×

BEST AND BRIGHTEST IN SCIENCE AND ENGINEERING HIGHER EDUCATION

Recommendation C:
Make the United States the most attractive setting in which to study and perform research so that we can develop, recruit, and retain the best and brightest students, scientists, and engineers from within the United States and throughout the world.
Implementation Actions

Action C-1: Increase the number and proportion of U.S. citizens who earn bachelor’s degrees in the physical sciences, the life sciences, engineering, and mathematics by providing 25,000 new 4-year competitive undergraduate scholarships each year to U.S. citizens attending U.S. institutions.


The Undergraduate Scholar Awards in Science, Technology, Engineering, and Mathematics (USA-STEM) would be distributed to states on the basis of the size of their congressional delegations and awarded on the basis of national examinations. An award would provide up to $20,000 annually for tuition and fees.


Action C-2: Increase the number of U.S. citizens pursuing graduate study in “areas of national need” by funding 5,000 new graduate fellowships each year.


NSF should administer the program and draw on the advice of other federal research agencies to define national needs. The focus on national needs is important both to ensure an adequate supply of doctoral scientists and engineers and to ensure that there are appropriate employment opportunities for students once they receive their degrees. Portable fellowships would provide a stipend of $30,000 annually directly to students, who would choose where to pursue graduate studies instead of being required to follow faculty research grants, and up to $20,000 annually for tuition and fees.


Action C-3: Provide a federal tax credit to encourage employers to make continuing education available (either internally or through colleges and universities) to practicing scientists and engineers.


These incentives would promote career-long learning to keep the workforce productive in an environment of rapidly evolving scientific and engineering discoveries and technological advances and would allow for retraining to meet new demands of the job market.

Suggested Citation:"Appendix E: Recommendations on STEM Education from *Rising Above the Gathering Storm*." National Academy of Sciences, National Academy of Engineering, and Institute of Medicine. 2011. Expanding Underrepresented Minority Participation: America's Science and Technology Talent at the Crossroads. Washington, DC: The National Academies Press. doi: 10.17226/12984.
×
Page 235
Suggested Citation:"Appendix E: Recommendations on STEM Education from *Rising Above the Gathering Storm*." National Academy of Sciences, National Academy of Engineering, and Institute of Medicine. 2011. Expanding Underrepresented Minority Participation: America's Science and Technology Talent at the Crossroads. Washington, DC: The National Academies Press. doi: 10.17226/12984.
×
Page 236
Suggested Citation:"Appendix E: Recommendations on STEM Education from *Rising Above the Gathering Storm*." National Academy of Sciences, National Academy of Engineering, and Institute of Medicine. 2011. Expanding Underrepresented Minority Participation: America's Science and Technology Talent at the Crossroads. Washington, DC: The National Academies Press. doi: 10.17226/12984.
×
Page 237
Suggested Citation:"Appendix E: Recommendations on STEM Education from *Rising Above the Gathering Storm*." National Academy of Sciences, National Academy of Engineering, and Institute of Medicine. 2011. Expanding Underrepresented Minority Participation: America's Science and Technology Talent at the Crossroads. Washington, DC: The National Academies Press. doi: 10.17226/12984.
×
Page 238
Next: Appendix F: Ingredients for Success in STEM »
Expanding Underrepresented Minority Participation: America's Science and Technology Talent at the Crossroads Get This Book
×
Buy Paperback | $40.00 Buy Ebook | $32.99
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

In order for the United States to maintain the global leadership and competitiveness in science and technology that are critical to achieving national goals, we must invest in research, encourage innovation, and grow a strong and talented science and technology workforce. Expanding Underrepresented Minority Participation explores the role of diversity in the science, technology, engineering and mathematics (STEM) workforce and its value in keeping America innovative and competitive. According to the book, the U.S. labor market is projected to grow faster in science and engineering than in any other sector in the coming years, making minority participation in STEM education at all levels a national priority.

Expanding Underrepresented Minority Participation analyzes the rate of change and the challenges the nation currently faces in developing a strong and diverse workforce. Although minorities are the fastest growing segment of the population, they are underrepresented in the fields of science and engineering. Historically, there has been a strong connection between increasing educational attainment in the United States and the growth in and global leadership of the economy. Expanding Underrepresented Minority Participation suggests that the federal government, industry, and post-secondary institutions work collaboratively with K-12 schools and school systems to increase minority access to and demand for post-secondary STEM education and technical training.

The book also identifies best practices and offers a comprehensive road map for increasing involvement of underrepresented minorities and improving the quality of their education. It offers recommendations that focus on academic and social support, institutional roles, teacher preparation, affordability and program development.

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    Switch between the Original Pages, where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

    « Back Next »
  6. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  7. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  8. ×

    View our suggested citation for this chapter.

    « Back Next »
  9. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!