account the identified constraints and meets specifications for desired performance. Because engineering design problems do not have single, correct solutions, engineering, by necessity, is a creative endeavor. Indeed, while scientists are most concerned with discovering what is, engineers are concerned with what might be. In addition to constraints and specifications, other important ideas in engineering are: systems, modeling, predictive analysis, optimization, and trade-offs. Although each of these terms has a general meaning, in the context of engineering the meanings are often specific. For instance, engineers use modeling to understand how a product or component may function when in use. Models can be drawings or constructed physical objects, such as mock-ups of an airfoil made from plastic or wood or mathematical representations that can be used to predict and study the behavior of a design before it is constructed.

Engineering has strong connections to many other disciplines, particularly mathematics and science. Engineers use science and mathematics in their work, and scientists and mathematicians use the products of engineering—technology—in theirs. Engineers use mathematics to describe and analyze data and, as noted, to develop models for evaluating design solutions. Engineers must also be knowledgeable about science—typically physics, biology, or chemistry—that is relevant to the problem they are engaged in solving. Sometimes, research conducted by engineers results in new scientific discoveries. For a more complete discussion of the origins and nature of engineering, see NAE and NRC (2009, chapter 2, “What Is Engineering?”).

A Brief History of Standards in STEM Education2

Educational standards are not new. More than a century ago, the Committee of Ten, a working group of educators assembled by the National Education Association, recommended requirements for college admissions, including laboratory experience. The committee’s report influenced numerous programs and practices in the nation’s high schools (DeBoer, 1991; Sizer, 1964). For instance, it was the impetus for the Harvard Descriptive List, a set of 40 physics experiments students applying to the college were required to complete. Applicants also had to take a written test about the experiments and principles of physics. In essence, the list, which defined a combination of content and teaching goals, was a set of standards.

Since the late 1800s, numerous policies, generally in the form of committee reports, have described what we now call educational standards. In the late 1980s, a new stage of education, the “standards era,” emerged. The origins of this new era can be traced back to A Nation at Risk, a report by the National Commission on Excellence in Education (NCEE, 1983), which included high school graduation requirements in five core subjects—English, mathematics, science, social studies, and computer science. The report also included two recommendations for strengthening the content of the core curriculum and using measurable goals to assess progress in learning. These requirements set the stage for standards as we know them today.

In 1989, then President George H.W. Bush met with governors from across the nation in Charlottesville, Virginia, for an education summit, the outcomes of which laid the groundwork for the Goals 2000 Education Program. The creation of those goals led to initiatives for voluntary national standards in all core subjects. That same year, the National Council of Teachers of Mathematics (NCTM) published Curriculum and Evaluation Standards for School Mathematics (NCTM, 1989), and the American Association for the Advancement of Science (AAAS) pub-


This section is based in part on a commissioned paper prepared for the committee by Rodger Bybee, Rodger Bybee and Associates. For the complete paper, see p. 55, Appendix B.

The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement