The fundamental idea of standards-based reform was to establish clear, coherent, and important content as learning outcomes for K–12 education. Funders and developers assumed that voluntary national standards would be used by state education departments and local jurisdictions to select educational programs, guide instructional practices, and implement assessments that would help students attain the standards. They also assumed that undergraduate teacher education and professional development for classroom teachers would be aligned with standards. These assumptions sound straightforward, but the reality has been considerably more complex. Because of the many independent decisions affecting teacher preparation, curriculum, and testing, the influence of national standards on teaching and learning has been highly variable (NRC, 2001). This issue is discussed more fully in Chapter 2.

In the two decades since the release of Science for All Americans (AAAS, 1989), a number of other STEM-related standards initiatives have been undertaken. In 1991, What Work Requires of Schools, a report of the Secretary’s Commission for Achieving Necessary Skills (DOL, 1991), and Professional Standards for Teaching Mathematics, an NCTM report, were both published. In 1993, building on Science for All Americans, AAAS published Benchmarks for Science Literacy, followed in 1996 by the NRC’s National Science Education Standards. In 2000, ITEA released Standards for Technological Literacy: Content for the Study of Technology, and NCTM published its revised standards in Principles and Standards for School Mathematics. A third NCTM revision, Curriculum Focal Points for Prekindergarten through Grade 8, was published in 2008. Today, as noted earlier, an initiative is under way to develop common core standards in mathematics and science. (For a more detailed chronology of STEM-related standards initiatives in the past 40 years, see the annex to this chapter.)

Project Goal, Objectives, and Study Process

The goal of the project described in this report was to assess the potential value and feasibility of developing and implementing content standards for K–12 engineering education. The project committee was not asked to develop standards for K–12 engineering and did not attempt to do so. The committee’s statement of task included the following objectives:

  1. Review existing efforts to define what K–12 students should know and be able to do related to engineering, both in the United States and other nations.

  2. Evaluate the evidence for the value and impact of content standards in K–12 education.

  3. Identify elements of existing standards documents for K–12 science, mathematics, and technology that could link to engineering.

  4. Consider how the various possible purposes for K–12 engineering education might affect the content and implementation of standards.

  5. Suggest what changes to educational policies, programs, and practices at the national and state levels might be needed to develop and successfully implement K–12 engineering standards or alternative approaches to standardizing the content of K–12 engineering education.

To address these objectives, the committee conducted a variety of information-gathering activities, including commissioning papers on relevant topics (see Appendix B), soliciting input from experts at a two-day workshop in summer 2009 (the workshop agenda appears at Appendix C), and conducting additional research. The committee had three face-to-face meetings (includ-



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement