1
Corrosion—Its Influence and Control

INTRODUCTION

With much of the world’s population living in close proximity to water and humidity, corrosion of metallic materials has been an inevitable part of the human experience. While the oxidation of iron (rust) is the most easily identified form of corrosion, this oxidation process represents only a fraction (albeit substantial) of material losses. Today, the impact of corrosion on society and the associated degradation of materials are far reaching owing in part to the increased complexity and diversity of materials systems, which include not only metallic materials but also ceramics, polymers, and composites, which are subject as well to environmental extremes. While legacy corrosion concerns remain, advancing technology and the need for global sustainability bring with them new and emerging corrosion issues whose negative impacts must be minimized through appropriate materials selection, mitigation and monitoring, and new materials development. See Figure 1.1 for an example of multiple simple mitigation efforts.

The impacts of corrosion are often described in economic terms. Financial losses have been assessed in several studies which concluded that premature materials degradation costs industrialized nations approximately 3 percent of their gross domestic product (GDP).1 In the United States it is estimated that between

1

Gerhardus H. Koch, Michiel P.H. Brongers, Neil G. Thompson, Y. Paul Virmani, and Joe H. Payer, Corrosion Cost and Preventive Strategies in the United State, National Technical Information Service Report No. FHWA-RD-01-156, 2001.



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement



Below are the first 10 and last 10 pages of uncorrected machine-read text (when available) of this chapter, followed by the top 30 algorithmically extracted key phrases from the chapter as a whole.
Intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text on the opening pages of each chapter. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

Do not use for reproduction, copying, pasting, or reading; exclusively for search engines.

OCR for page 11
1 Corrosion— Its Influence and Control INTRODuCTION With much of the world’s population living in close proximity to water and humidity, corrosion of metallic materials has been an inevitable part of the human experience. While the oxidation of iron (rust) is the most easily identified form of corrosion, this oxidation process represents only a fraction (albeit substantial) of material losses. Today, the impact of corrosion on society and the associated degra- dation of materials are far reaching owing in part to the increased complexity and diversity of materials systems, which include not only metallic materials but also ceramics, polymers, and composites, which are subject as well to environmental extremes. While legacy corrosion concerns remain, advancing technology and the need for global sustainability bring with them new and emerging corrosion issues whose negative impacts must be minimized through appropriate materials selec- tion, mitigation and monitoring, and new materials development. See Figure 1.1 for an example of multiple simple mitigation efforts. The impacts of corrosion are often described in economic terms. Financial losses have been assessed in several studies which concluded that premature materials degradation costs industrialized nations approximately 3 percent of their gross domestic product (GDP).1 In the United States it is estimated that between 1 Gerhardus H. Koch, Michiel P.H. Brongers, Neil G. Thompson, Y. Paul Virmani, and Joe H. Payer, Corrosion Cost and Preentie Strategies in the United State, National Technical Information Service Report No. FHWA-RD-01-156, 2001. 

OCR for page 11
research oPPortunities corrosion science engineering  in and FIGURE 1.1 A mooring ring, shackle, and thimble with rope illustrate three different techniques for combatting the effects of materials degradation,. Originally, the ring and eye bolt were painted, the shackle and thimble were galvanized (zinc coated), and the mooring line was made of nylon. Courtesy of Erik Svedberg. $2 trillion and $4 trillion are lost to corrosion each decade—on a relative scale, this amount equates to the cost of repairing the infrastructure damage of three or four hurricanes as large as Hurricane Katrina, which caused massive damage in New Orleans, southern Mississippi, and Alabama. However, the true costs of corrosion to society are even more pervasive and, in practice, difficult to compile. Several studies, including a recent National Research Council (NRC) report on corrosion education,2 have described both the economic impacts of corrosion and the less measurable impacts such as loss of readiness— that is, the nation’s ability to respond militarily or otherwise to emergencies or other situations involving national security. For example, while the maintenance and replacement costs associated with the corrosion of military systems can be 2 National Research Council, Assessment of Corrosion Education, The National Academies Press, Washington, D.C., 2009, available at http://www.nap.edu/catalog.php?record_id=12560.

OCR for page 11
corrosion—its influence control  and readily estimated, the dollar costs associated with the military’s inability to respond promptly to a national emergency are difficult to capture directly. Similarly, while the costs of replacing deteriorating bridges and highway infrastructure can be estimated—including the impacts on national productivity and security brought about by failures and traffic congestion during repairs—such estimates require assumptions that are subject to considerable judgment. Corrosion can affect public health, the environment, and global sustainability in ways that cannot be quantified simply in terms of GDP loss. The deterioration of an early generation of medical devices and implants resulting from interactions with human body fluids, the leaching of corrosion products into the environment, and the weakening of the nation’s energy and transportation infrastructures all have impacts that greatly exceed those that are purely financial. The NRC report Assessment of Corrosion Education3 discusses the broader impact of corrosion and educational challenges in greater detail (Figure 1.2). Interestingly, the physical processes that cause materials to degrade may be har- nessed for society’s benefit. For example, the fabrication of semiconductor devices relies on a variety of etching, deposition, and oxidation processes often operating at the nanometer level. The ability to precisely control the rates and extent of these processes is critical to that fabrication. Corrosion-associated processes are also rel- evant to other technologies, both in terms of routes by which to synthesize materials and as a means to understand their performance from a mechanistic standpoint. Examples of materials issues include biodegradability and recycling, battery design and development, nanoporous metals for catalysis and sensing, and fuel cells and gas separation membranes. State-of-the-art corrosion research therefore has the potential not only to contribute significantly to many other fields of science and engineering but also to enable them. TYPES OF CORROSION Corrosion has historically been defined as the destructive oxidation of metallic materials. More recent definitions have described corrosion as the degradation of any material and its attendant loss of function by exposure to and interaction with its environment. The committee, mindful of the increased application of nonmetals in important structural applications, chose to define corrosion in the following broader context: Corrosion is the environmentally induced degradation of a mate- rial that involves a chemical reaction. Mechanical degradation mechanisms, such as creep, wear, and fatigue, are not considered to be corrosion, although corrosion processes may accelerate these degradation modes. Worth mentioning at this point 3 National Research Council, Assessment of Corrosion Education, The National Academies Press, Washington, D.C., 2009, available at http://www.nap.edu/catalog.php?record_id=12560.

OCR for page 11
research oPPortunities corrosion science engineering  in and FIGURE 1.2 Corrosion affects nearly every aspect of modern society. In many of these areas, however, its impact is difficult to quantify. is hydrogen embrittlement, the process by which various metals and alloys become brittle and crack following exposure to hydrogen. Hydrogen embrittlement or hydrogen cracking is often the result of the unintentional introduction of hydrogen into susceptible metals and alloys during formation or finishing operations. The leading types of corrosion are outlined in Box 1.1. It should be pointed out here that corrosion processes often involve multiple conjoint effects. Rarely does a single mechanism or event drive corrosion; rather, a number of events combine to produce severe effects. Thus, we must keep in mind that corrosion processes usually occur in the context of other factors (loads, wear, crevices, temporally and spatially varying environments, etc.). One such combination of factors can lead to mechanically assisted corrosion in total hip replacements:

OCR for page 11
corrosion—its influence control  and BOX 1.1 Types of Corrosion Metallic Corrosion Uniform, or “general,” corrosion Dealloying Pitting Crevice related Intergranular Filiform Corrosion by high-temperature gases (oxidation,1 sulfidation, chlorination, etc.) Deposit-induced corrosion, which includes “hot corrosion” Galvanic mechanically assisted corrosion Stress corrosion cracking Corrosion fatigue Fretting corrosion Tribocorrosion Erosion corrosion Hydrogen embrittlement, hydrogen-induced cracking, and hydrogen attack Nonmetallic Corrosion Recession of ceramics in the presence of water vapor or volatile compounds Diffusion-controlled leaching (ion exchange) in glass Glass network hydrolytic dissolution Ultraviolet degradation of organic coatings and polymers Hydrolysis Radiolysis Autocatalytic (acid-driven) degeneration Metal-ion-induced oxidation 1 Oxidation is used here in a very narrow sense to indicate gas-metal reactions that form oxide products. • Wear (typically fretting), • Passive oxide abrasion, • Repassivation, • Hydrogen ion generation, and • Crevice environments. It is the biological inflammatory response to these processes that generates aggressive oxidative environments in vivo (generation of reactive oxygen species, etc.) that combine to lead to severe attacks on medical alloys. Ti alloys can become subjected to pitting in vivo, and Co-Cr-Mo alloys can undergo penetrating inter- granular corrosion as well, leading to implant fatigue and fracture.

OCR for page 11
research oPPortunities corrosion science engineering  in and Another kind of corrosion sustained by medical implants is the metal-ion oxidation sustained by polyurethane pacemaker leads. This failure mode is highly complex and involves water transport across the insulation of the lead, allowing contact with the Co-Cr alloy, which then corrodes by a fretting mechanism. The metal ions, in particular Co2+, then penetrate the polyurethane and oxidize it in a catalytic fashion. This leads ultimately to an electrical breach in the lead and failure of the pacemaker, often resulting in the death of the patient. EXAMPLES OF CORROSION MITIgATION CHALLENgES Corrosion may be inevitable, but there are ways to retard it—that is, to slow the kinetics of deterioration. The mitigation strategy for a material must be tailored to the environment and to the composition and structure of the material. Some materials are inherently slow to corrode, especially in the absence of oxygen; others corrode slowly by forming layers of protective corrosion product (Box 1.2). Materials with different properties will require different mitigation strategies: • Metals and alloys without intrinsic corrosion resistance. Such materials can corrode in otherwise innocuous waters or atmospheres, when dissolved oxygen is present or in which water can be reduced to generate free hydrogen. These metals and alloys usually need to be actively protected. Alloys such as low-carbon steels can be used in thick sections to accommodate the loss of material. • Passie metals and alloys. Usually alloys such as stainless steel or nickel- chromium can be used unprotected in innocuous environments and in a certain range of aggressive environments such as seawater or mild acids, depending on the content of alloying elements. Superpassive metals—such as tantalum, which resists strong hydrochloric acid—also exist but are considerably more expensive. The main issue with passive metals is their propensity for localized—rather than uniform—corrosion. • Copper-based materials. Owing to the thermodynamic immunity of copper, corrosion is normally slow or absent unless oxygen or another strong oxidant is present. Aqueous sulfide solutions are an exception. When oxygen is present or in the presence of acid rain, these materials may react like other nonpassive metals (see Figure 1.3). • Certain high-strength alloys. These alloys can survive at very high temperatures because they form surface layers that protect against oxygen in the application envi- ronment or because they are given metallic coatings that perform this function. • Glass and ceramics. Such materials are affected not by electrochemical pro- cesses but mainly by simple dissolution of the material. One way of protecting against the corrosion of glass is to add lime: added to soda-glass it reduces solubility in water.

OCR for page 11
corrosion—its influence control  and BOX 1.2 Survivor In his 2007 book The World Without Us,1 Alan Weisman suggests that copper and its alloys are the structural materials most likely to survive for thousands of years in a world suddenly depopulated of human beings. This conclusion, based on a strictly thermodynamic criterion (copper being the most noble structural metal and sometimes found uncombined in nature), may not be correct, however, given that some invented materials, like stainless steel, will also endure for thousands of years because their surface is protected by passivating oxide films. 1 Alan Weisman, The World Without Us, Thomas Dunne Books, New York, 2007. FIGURE 1.3 Bronze statue with a protective layer of patina created by slow chemical alteration of the copper content, producing a basic carbonate. The statue has been exposed to the coastal weather outside the city hall of Stockholm. Courtesy of Erik Svedberg.

OCR for page 11
research oPPortunities corrosion science engineering  in and • Polymers. Degradation is due to a wide array of physiochemical processes. One common problem is swelling, where small molecules infiltrate the structure, reducing strength and stiffness and causing a volume change. Conversely, many polymers are intentionally swelled with plasticizers, which can be leached out of the structure, causing brittleness or other undesirable changes. The most common form of degradation, however, is a decrease in polymer chain length. The mecha- nisms that break polymer chains are ionizing radiation (most commonly ultraviolet light), free radicals, and oxidizers such as oxygen, ozone, and chlorine. Additives as simple as a UV-absorbing pigment (i.e., titanium dioxide or carbon black) can slow these processes very effectively. Mitigation techniques can be roughly classified as either active or passive. Examples of active mitigation techniques include inhibitors, external cathodic protection, with or without coatings, and sacrificial anodes. Passive techniques include material selection, organic and inorganic coatings, and metallic coatings (including both barrier and sacrificial coatings). One other example of mitigation is control of the environment (oxygen, ions, etc.) such as is sometimes done in boilers when oxygen and ions are removed while inhibitors (amines) are added. The decision to use one technique or a combination of techniques depends on the type of corrosion that is expected, the tolerance for risk, the cost of the technique, the material, the environment, and other factors related to the design of a structure, such as accessibility and size. The committee assembled and distributed a questionnaire focused on corro- sion mitigation in order to better understand the current concerns and problems. The questionnaire, which was made available to key personnel at DOD, MTI, and LMI; the NACE Technical and Research Activities Committees; and directly through the ROCSE Web site, gathered information on the respondents’ backgrounds; types of corrosion that were of greatest concern; types, costs, and efficacies of mitiga- tion systems employed; and idealized mitigation systems. Respondents were also given the opportunity to suggest scientific advances that could lead to new and/or better mitigation technologies. Almost 200 people from a wide variety of indus- try sectors responded to the questionnaire. The majority of the respondents had been involved with corrosion mitigation for more than 15 years managing assets valued at more than $10 million each. A variety of corrosion mechanisms were cited as being troublesome to the respondents, with pitting corrosion the biggest single problem. What most concerned the respondents was safety. Many corrosion mitigation strategies were relied on by the respondents, the most frequent being material selection, monitoring/inspections, external cathodic protection with coat- ings, organic coatings, and inhibitors. A majority of respondents reported having spent more than $200,000 per year on corrosion mitigation.

OCR for page 11
corrosion—its influence control  and Overall, the respondents were at least moderately satisfied with their choice of mitigation technique. In responses to questions about difficulties encountered with the different techniques, some areas of concern became apparent, including sensors for measuring localized corrosion, remote sensing, protection under disbonded coatings, surface preparation requirements for coatings, lack of training, and lack of reliable real-time models to predict lifetimes and damage mechanisms. When asked where future mitigation research should be focused, most questionnaire respondents suggested monitoring and modeling (especially remote monitoring or monitoring of localized corrosion and modeling for lifetime prediction and for new alloy performance), coatings (especially for high-temperature applications or to reduce the need for surface preparation), and development of active systems. The responses are given in more detail in Appendix B, “Results of the Com- mitee’s Corrosion Mitigation Questionnaire.” SuCCESS STORIES FROM CORROSION RESEARCH The success stories that follow are not exhaustive. Rather, they were selected to illustrate the impact of advances in science and engineering—emerging tools, analytical approaches, and new materials design, synthesis, and processing—on strategies for material and operational solutions to environmentally induced degra- dation. These advances have historically helped the community develop an under- lying scientific understanding as well as the technological means to mitigate corro- sion. The committee is confident that the community will continue to pursue these goals and felt that it was not necessary to arbitrarily limit (or to underestimate) the imagination of researchers by specifying which developments and techniques should be pursued, particularly given the vast range of related phenomena. Rather, historical examples are contained in many of these success stories, which, addition- ally, offer a glimpse into why future advances hold promise for greater progress in combating corrosion and also illustrate the other factors (such as societal needs, technological drivers, policy, multidisciplinary approaches, and thrusts of critical size) that contribute to successful endeavors to deal with corrosion. The examples begin with general materials development and then move to application-specific success stories. Corrosion- and Heat-Resistant Alloys Despite the fact that it is not thermodynamically possible to develop alloys that are totally immune to corrosion, there have been extraordinary developments with respect to heat- and corrosion-resistant alloys in the last century, and—as a result of research efforts—these developments have accelerated over the last few decades. Among the many success stories that are associated with these new mate-

OCR for page 11
research oPPortunities corrosion science engineering 0 in and rials, one of the most important has been the development of the modern family of austenitic stainless steels. As early as 1821, Berthier, based on the work of Faraday and Stodart, produced stainless alloys of iron and chromium.4 However these alloys were extremely brittle and had no structural usefulness. The first useful stainless steels were developed in the beginning of the twentieth century by Monnartz in Germany and Brearley in England,5 but it was not until the 1912-1914 period that the commercial success of these austenitic steels—primarily based on the addition of 18 percent chromium and 8 percent nickel—was first recognized.6 In the 1970s—when strength considerations became an issue for stainless steels—duplex versions were developed, which also increased resistance to chloride stress corrosion cracking. In the 1980s stainless steels with higher molybdenum were formulated to solve problems with localized corrosion encountered in ag- gressive environments. This abbreviated history of stainless steels illustrates the successes in the devel- opment of iron-based, corrosion-resistant alloys. Developments were accompanied by use of increasingly sophisticated experimental and characterization techniques from advances in allied fields. However, it was also a labor-intensive effort, and the time period—from recognition of the problem, to an understanding of its origin, to the development of the most resistant alloys—was on the order of 80 years. This was hardly an efficient process. Even with advances in alloy development technologies, it still took almost a quarter of a century to improve the nickel-containing alloys of the 600 family of stainless steels to the more corrosion-resistant versions (e.g., alloys 690, 22, 59, and 2000) that are enabling many applications in extremely aggressive environments found in the chemical industries, nuclear reactors, steam generators, and sour oil and gas production. The development of heat-resistant alloys was similarly lengthy and inefficient. In the 1970s the protective oxide layers on nickel-based alloys were much improved by alloying them with elements that resulted in a more stable and tenacious layers of alumina versus chromia. It is only now that the concept of alumina protective layers is being applied to more cost-effective and high-temperature iron-based heat-resistant alloys, effectively producing a new class of stainless steels based on the principles of selective oxidation and advanced microstructural control of pre- cipitates for strengthening.7 4 Louis Kuslan, “Berthier, Pierre,” pp. 72-73 in Dictionary of Scientific Biography, Charles Scribner’s Sons, New York, 1970-1980. 5 See “Harry Brearley, 1871–1948,” Tilt Hammer Web site at http://www.tilthammer.com/bio/brear. html. 6 New York Times, January 31, 1915. 7 Y. Yamamoto, M.P. Brady, Z.P. Lu, P.J. Maziasz, C.T. Liu, B.A. Pint, K.L. More, H.M. Meyer, and E.A. Payzant, Creep-resistant, Al2O3-forming austenitic stainless steels, Science 316:433-436, 2007.

OCR for page 11
corrosion—its influence control  and In the last few decades, amorphous and nonequilibrium alloys processed using heretofore exotic methods (e.g., spun cooled, sprayed, sputter deposited, and laser surface melted) presented the potential for extraordinary advances in the devel- opment of corrosion-resistant alloys. Iron- and nickel-based metallic glasses have been developed whose corrosion resistance rivals that of the best conventional nickel-based superalloys in the low-temperature regime.8 This advance was enabled by certain glass-forming elements that allow for the addition of large amounts of traditional corrosion-beneficial alloying elements without detrimental effects; the emergence of metallic glass composites; and the benefits of selected minor alloying elements. In addition, multifunctional amorphous and semiamorphous alloys9 that offer tunable barrier, sacrificial, and chemical-inhibiting capabilities have also been produced. While these materials had long been considered impractical, laser surface treating used by heavy equipment manufacturers has enabled mass production of coatings and bulk metallic glasses and demonstrated routes to practical processing technologies that can produce significant improvements in corrosion protection. What’s Next for Corrosion- and Heat-Resistant Materials? The emergence of the metallic glasses and alumina-forming stainless steels as potentially highly corrosion-resistant materials is only one example of the progress that is continuing to be made. Both show ways in which lessons learned, new mate- rials developments, the incorporation of modern tools into research activities, and growing understanding of the relationships between structure, materials behavior, and component design can speed the development of such alloys. Key challenges remain, however, in the design or specification of materials for targeted lifetimes in particularly aggressive environments. Conclusion (Corrosion- and Heat-Resistant Materials) The most impressive corrosion-resistant alloys in the last half century began to be developed by metals producers. Work on amorphous metals and advanced surface treatments have been funded by university-led efforts or consortia of uni- versities and companies. One area where industry has taken the lead recently is corrosion-resistant rebar materials where cost-effective stainless grades are being 8 J.R. Scully, A. Gebert, J.H. Payer, Corrosion and related mechanical properties of bulk metallic glasses, Journal of Materials Research 22(2):302-313, 2007; R. Huang, D.J. Horton, F. Bocher, and J.R. Scully, Localized corrosion resistance of Fe-Cr-Mo-W-B-C bulk metallic glasses containing Mn+Si or Y in neutral and acidified chloride solutions, Corrosion 66, 035003, 2010; doi:10.5006/1.3360908. 9 F. Presuel-Moreno, M.A. Jakab, N. Tailleart, M. Goldman, and J.R. Scully, Corrosion resistant metallic coatings, Materials Today 11(10):14-23, 2008; M.A. Jakab and J.R. Scully, Storage and release of inhibitor ions from amorphous Al-Co-Ce alloys: Controlled release on demand, Nature Materials 4:667-670, 2005.

OCR for page 11
research oPPortunities corrosion science engineering  in and FIGURE 1.4 Femoral replacement part (T28) with stress corrosion cracking. Courtesy of Stanley A. Brown, U.S. Food and Drug Administration. Conclusion (Medical Deices) As advances in the understanding of medicine and technology allow for inno- vative devices and therapies, new and better materials will have to be developed for use in the human body. Up to now most of the materials used in implantable medical devices were developed for other applications and later applied for medi- cal uses because they had some of the desired requirements (strength, flexibility, fatigue resistance, electrical conductance, corrosion resistance). However, the cost of developing and qualifying materials for implantation is often not very attractive for the many companies. Government funding for R&D in implantable medical devices is especially desirable in this area. Current understanding of how biology and materials interact is still quite primitive. To truly design new medical devices from first principles requires a far better understanding of the interface of mate- rials and biology.

OCR for page 11
corrosion—its influence control  and Nuclear Reactor Systems Commercial and military nuclear reactors have experienced a wide range of corrosion problems over the past 55 years, and—starting in the 1960s—corrosion research has been put to good use to mitigate and solve those problems. All oper- ating plants in the United States use ordinary light water with few impurities but have nevertheless been surprisingly susceptible to corrosion. In boiling water reactor systems, the dominant problem had been intergranular stress corrosion cracking (SCC) in 304 austenitic stainless steel sensitized by weld- ing, which was causing crippling levels of plant outage. This situation was trans- formed by the recognition that the cracking could be controlled by modifying the water chemistry and the surface condition of the wetted surfaces of the plant. First, the impurity content of the water was reduced; then, hydrogen was intro- duced, at undesirably high levels, to lower the corrosion potential of the steel. Then, in a classic application of corrosion science, it was shown that the wet deposition of noble metals on the plant surfaces could achieve a similar level of protection with much lower hydrogen levels. All this practical mitigation was supported by extensive corrosion science research, including the development of in situ probes for monitoring hydrogen content, electrode potential, and crack growth rate. In pressurized water reactors, corrosion problems have been associated mostly with steam generators, where nickel-based alloy 600 was originally used for the tubing that separated the primary reactor coolant water from the water that is boiled to drive the turbines. This proved to be a bad choice because the material was susceptible to SCC from both sides. However, remedial measures—including heat-treating the tubing material, retubing with a new alloy, and reducing the deposition of sludge arising from impurities in the feed water—prolonged the life of the steam generators. In the process of this mitigation, superb research in support of critical issues was done in metallurgy, chemical engineering corrosion science, and even geo- chemistry. Now, the industry is in the position that it can—with fair confidence— predict extremely long life for its new plants as well as exceed the life extension targets for refurbished plants. Both kinds of nuclear plants have experienced SCC problems of neutron- irradiated material in the core, and some of the most ambitious corrosion research of the past two decades has dealt with the resulting blend of material property alteration, microstructure, and SCC behavior using advances in modeling and characterization. As a result of experimentation and basic research, material life can be predicted more accurately, and recommendations exist for new alloys with enhanced resistance to this specialized form of SCC. The ultimate goal is quantita- tive prediction of life once the corrosion and degradation mechanisms have been fully understood.

OCR for page 11
research oPPortunities corrosion science engineering 0 in and Models and real-time information measured at the plants allow the plant life to be extended while still operating within technical specifications. This real-time information provides a deeper understanding of plant behavior and leads to im- proved plant performance. This multitiered approach of using modeling, sensors, and plant information allowed researchers to solve the problem of corrosion- triggered activity transport around the primary cooling circuit, leading to a buildup of radiation fields outside the core. Several models, in conjunction with plant data, are used around the world to predict the accumulation of those unwanted radiation fields.14 The models take into account that the water chemistry of pressurized water reactors is affected by water radiolysis, chemical reactions, and convection of the injected chemicals like hydrogen gas, boron, and lithium (to maintain the proper percent hydrogen). Particle deposition is modeled around the entire primary cool- ant loop. Such modeling and monitoring are used to assure that exposure of plant personnel to radiation can be kept at levels that meet regulatory standards. The “chemistry control” of primary and secondary coolant fluid has become a mature, integral part of nuclear reactor corrosion control, because water chem- istry and the oxidizing power of the fluids are key factors in corrosion initiation phenomena and propagation rates. Water chemistry, potential, and redox electrode sensors have all been developed that enable the verification of key water chemistry variables and their manipulation in various ways to reduce corrosion. Moreover, damage sensors have been developed to help verify model predictions and confirm the beneficial effects of water chemistry “housekeeping” on rates if stress corro- sion propagation. These advances in sensor and measurement technology have been instrumental in programs to extend reactor service life and to reduce reactor downtime. These measurements and others are crucial to the ability to predict the lifetime of existing and new nuclear power reactors and corrosion in both. What’s Next for Nuclear Reactor Systems? New designs and new types of advanced nuclear power plants (e.g., supercritical steam) present the same need for in-depth understanding of corrosion processes and the associated means to control corrosion’s detrimental effects. Indeed, for new plant concepts, knowledge gained from current R&D should be used prescriptively (rather than remedially and reactively, as in earlier generations of plants) in the design of components and control systems to avoid operational problems from 14 International Atomic Energy Agency, High Temperature On-Line Monitoring of Water Chemis- try and Corrosion Control in Water Cooled Power Reactors: Report of a Coordinated Research Project, -, IAEA-TECDOC-1303, July 2002; Nuclear Energy Education Research, Electrochemistry of Water-Cooled Nuclear Reactors, Nuclear Energy Education Research (NEER) Final Technical Progress Report, Grant No. DE-FG07-021D14334, August 8, 2006.

OCR for page 11
corrosion—its influence control  and corrosion and environmental effects. Indeed, as water-cooled reactors are driven to higher efficiencies and burn-ups and stricter limits on safety performance, corro- sion challenges will only multiply and the environments to which the materials will be subjected become more extreme. Then there are the formidable corrosion chal- lenges in advanced (generation IV and beyond) reactor systems. Supercritical water poses extreme risks of stress corrosion failure, especially in pressure vessel designs (as opposed to the CANDU-like design), and water radiolysis in such conditions is not well enough understood to provide a baseline for definition of the environment. Neutron irradiation complicates such assessments even further. Developments in high-temperature gas-cooled systems will be plagued by corrosion issues due to impurities in the helium gas, and other advanced designs using liquid metals will be subject to various forms of degradation, including corrosion.15,16 Conclusion (Nuclear Reactor Systems) In response to regulatory and economic pressures, some of the best and most critical successes in corrosion science and engineering have come about by solving a host of initially unanticipated problems related to the continued safe operation of nuclear plants. Radioactive Waste Disposal of high-level nuclear waste is a worldwide issue. The United States alone has 77,000 tons of high-level nuclear waste, equivalent to one half pound for every citizen. The Federal Nuclear Waste repository was established to isolate this waste for at least 10,000 years without radionuclide release, which will be dependent on the successful choice, fabrication, and total performance of an engineered waste barrier that is resistant, but not immune, to corrosion. The total system relies on defense in depth through vitrification and immo- bilization of the nuclear waste within glass, the storage of borated stainless steel baskets, and enclosure in a modern corrosion-resistant alloy. An extraordinary ef- fort has been under way around the world to verify acceptable performance over what had heretofore been unthinkable lifetimes. This has brought about some revolutionary new lines of thinking in the corrosion field—on, for instance, the theory, experiment, and modeling of extremely low corrosion rates; the revisita- tion of such issues as long-term passivity of alloys in complex environments; and 15 U.S. Department of Energy, Office of Basic Energy Sciences, Basic Research Needs for Adanced Nuclear Energy Systems, 2006. 16 C. Cabet, J. Jang, J. Konys, and P.F. Tortorelli, Environmental degradation of materials in ad - vanced reactors, MRS Bulletin 34(1):35-39, 2009.

OCR for page 11
research oPPortunities corrosion science engineering  in and on critical partnerships with experts in other fields who are able to bring insights from, and advances in, their fields to bear on the problem. Conclusion (Radioactie Waste) Unprecedented coupling between corrosion scientists, geochemists, and risk assessment experts can serve as a useful model for any high-priority thrust in corrosion. Our understanding of corrosion, welding, phase stability, and nickel- chromium-molybdenum superalloys has been advanced to levels equal to any other alloy system. While translation to practice awaits policy and political decisions, this research has led to a vast improvement in corrosion science and to technological confidence that an engineered waste barrier can be perfected to contain nuclear waste. Protective Coatings for High-Temperature Combustion Turbines Coatings are used in a variety of applications to protect alloys that exhibit at- tractive properties at high temperatures but would be too reactive in the service environment. For example, aluminum-oxide-forming bond coats provide super- alloys used in the hot sections of gas turbines with oxidation resistance as part of the ongoing drive toward higher efficiencies and better performance characteristics for air-breathing propulsion and land-based power systems. Alternatively, materials that already exhibit good high-temperature proper- ties and corrosion resistance at the requisite temperatures are desirable. As such, ceramics and ceramic-composite materials such as silicon carbide have been the subject of study and development for a number of years. However, when such composites were targeted for use in combustion turbines, the presence of water vapor at elevated pressures revealed that silicon dioxide is unstable owing to its susceptibility to volatilization. Work at the National Aeronautics and Spaces Administration (NASA) Glenn Research Center and elsewhere conclusively dem- onstrated the impact of water vapor on silicon carbide recession and produced a robust model that definitively described the recession rates in terms of the im- portant environmental parameters.17 This work also indicated candidate materials that could be used for environmental barrier coatings18 to protect these composites (Figure 1.5) and enabled the development of reliable accelerated testing of can - 17 See, for example, E.J. Opila, Oxidation and volatilization of silica formers in water vapor, Journal of the American Ceramic Society 86:1238-1248, 2003. 18 See, for example, K.N. Lee, D.S. Fox, and N.P. Bansal, Rare earth silicate environmental bar- rier coatings for SiC/SiC composites and Si3N4 ceramics, Journal of the European Ceramic Society 25:1705-1715, 2005.

OCR for page 11
corrosion—its influence control  and FIGURE 1.5 Combustor liner made from SiC-fiber-reinforced SiC (SiC/SiC) composite for the Solar Turbines, Inc., Centaur 50 gas turbine. An environmental barrier coating was applied to the inside circumference of the outer ring and to the outside circumference of the inner ring (the surfaces facing the combustion gas). Inset: Cross section of the coating; BSAS, barium-strontium aluminosilicate; mullite, aluminosilcate; underlying the Si layer is the SiC/SiC composite. Courtesy of Solar Turbines, Inc., and Oak Ridge National Laboratory. didate coatings.19 Collaborations between NASA, the national laboratories, and industrial partners have led to the development of robust processes for applying state-of-the-art coatings to SiC matrix composites. 19 R.C. Robinson and J.L. Smialek, SiC recession caused by SiO scale volatility under combustion 2 conditions: 1, Experimental results and empirical model, Journal of the American Ceramic Society 82:1817-1825, 1999; E.J. Opila, J.L. Smialek, R.C. Robinson, D.S. Fox, and N.S. Jacobson, SiC recession caused by SiO2 scale volatility under combustion conditions: II, Thermodynamics and gaseous- diffusion model, Journal of the American Ceramic Society 82:1826-1834, 1999; P.F. Tortorelli and K.L. More, Use of very high water-vapor pressures to evaluate candidate compositions for environmental barrier coatings, Proceedings of the ASME Turbo Expo 00 1:363-367, 2005.

OCR for page 11
research oPPortunities corrosion science engineering  in and What’s Next for Protectie Coatings? The need for even higher engine efficiencies and performance requires materi- als that show extraordinary stability and resistance to degradation at environmental extremes of temperature, pressures, and reactive species.20 Increasingly robust envi- ronmental barrier coatings will be needed, or failures as those described in Box 1.3 will continue to occur. These coatings will require the development of even more advanced mechanistic knowledge and models. Conclusion (Protectie Coatings) Through government and industry collaborations, a fundamental understand- ing of the degradation mechanisms associated with high-temperature volatiliza- tion of SiC matrix composites, combined with the development of highly reliable coating processes, has paved the way for use of the high-temperature SiC matrix composites in aero propulsion and land-based combustion turbine applications. The ability to use SiC matrix composites in oxidizing environments containing water vapor and other impurities has pushed by 200°C the envelope for the tem- perature at which this structural material can be used, making it one of the most robust commercial materials for very high temperature applications. SuMMARY OBSERVATIONS There has been significant progress in the development of corrosion-resistant materials, understanding of basic mechanisms by which corrosion occurs, and the implementation of mitigation techniques. This progress has allowed for the current state of materials usage in both common and harsh environments. The primary drivers for corrosion research have been industrial and government needs. Address- ing these needs has led to advances in science, as well as further practical improve- ments, which then provide for further scientific advances. Although there is always a possibility for doing more, the government has played a vital role in the field of corrosion research—including challenging industry with critical problems (e.g., related to access to space, nuclear power, reduced maintenance of roads and bridges, and performance of military equipment), funding and conducting research, estab- lishing standards, and prescribing regulatory requirements for safety and health. Nevertheless, the industrial research and development base that led to many of the advances in new materials and understanding of corrosion behavior has eroded, and as such, the government agencies that have responsibilities dependent on the 20 U.S. Department of Energy, Office of Basic Energy Sciences, Basic Research Needs for Materials under Extreme Enironments, report on the Workshop on Materials under Extreme Environments, June 11-13, 2007, available at http://www.er.doe.gov/bes/reports/files/MUEE_rpt.pdf.

OCR for page 11
corrosion—its influence control  and BOX 1.3 Corrosion Challenges with Infrastructure Systems Infrastructure systems are meant to safely serve society for long periods. Design codes provide guidance and requirements to limit the corrosion of these infrastructure systems with the objective of ensuring these longer service lives. It is generally not the objective of these codes to prevent all corrosion, but in conjunction with proper inspections to limit the risk of failure resulting from corrosion. However, these guidelines and requirements have not always resulted in long-lasting infrastructure systems. Corrosion in our infrastructure systems results in reduced structural capacities, which can lead to structural failures. Figure 1.3.1 shows the underside of a steel bridge member exhibiting significant corrosion—in this case, good inspection practices revealed the damage, thereby preventing failure. However, corrosion has led to failures (in 1967, corrosion and fatigue of an I-beam on the Silver Bridge resulted in its collapse,1 killing 26 people who were using the bridge. More recently (2000), a pedestrian bridge in Charlotte, North Carolina, failed due to corrosion of the steel reinforcement, injuring 107 people.2 Underground infrastructure systems also exhibit corrosion. Figure 1.3.2 shows a failed cast iron pipe. Water pipe failures throughout the United States have led to closures of subways, roads, and businesses, often temporarily crippling the local economy. In fact, the failure of large-diameter water mains has led to significant flooding and millions of dollars in FIGURE 1.3.1 The underside of a steel bridge member exhibiting significant corrosion. Courtesy of the Texas Department of Transportation, © 2007. All rights reserved. continued

OCR for page 11
research oPPortunities corrosion science engineering  in and BOX 1.3 Continued FIGURE 1.3.2 A failed cast iron pipe. Courtesy of Mark Lewis, East Bay Municipal Utility District. repair costs. The Pipeline and Hazardous Materials Safety Administration (PHMSA) regulates the inspection and incident reporting of pipelines carrying hazardous materials. Increased inspec- tion requirements have led to a 40 percent reduction in serious incidents.3 Although corrosion has resulted in and will continue to result in significant loss of economy, the implementation of sound inspection requirements have proven to reduce serious incidents and failures. With better science and engineering, a more economical solution to corrosion prevention can likely be discovered. 1 National Transportation Safety Board, A Highway Accident Report, Collapse of U.S. 35 Highway Bridge, Government Printing Office, Washington, D.C., 1971. 2 R.P. Poston and J.S. West, Investigation of the Charlotte Motor Speedway Bridge collapse, ASCE Conference Proceedings 171:243, 2005. 3 U.S. Department of Transportation Web site, http://www.phmsa.dot.gov/portal/site/PHMSA, accessed April 20, 2010.

OCR for page 11
corrosion—its influence control  and materials used will need to consider new options. In addition, despite major differ- ences in corrosion problems as well as solutions from industry to industry, the issue is always there. To ensure that corrosion-related issues are identified and solutions implemented, industry must be integrally involved. Advances in corrosion research have also been facilitated over the years by developments from other fields. Major advances in materials characterization and computation and modeling in recent years make this an opportune time to address previously unsolvable corrosion problems. New materials developments have been significant, and recent developments based on computational methodologies allow the process to occur at a much faster pace. However, corrosion resistance is not yet among the properties being optimized (see the section on integrated computational materials science and engineering in Chapter 3). With some exceptions (see, for example, the nuclear reactor systems success story outlined above), a common element lacking in materials development and selection is the ability to predict the effects of corrosion on useful system lifetime and to use condition monitoring to detect end of life. Methodologies for accelerated testing and predictive modeling are often lacking but are nonetheless critical to the design and management of complex systems. Recent advances in data analysis and engineering practice are aimed at predicting and managing lifetime using advanced techniques of informatics, which can be of great value to knowledge discovery regarding corrosion processes and development of mitigation strategies but has, for the most part, been lacking in corrosion efforts. Hence, corrosion is not one of the properties generally considered in this new prognosis strategy. The impact of corrosion on society is very significant and affects nearly every aspect of daily life in an industrialized country. In monetary terms, degradation by corrosion causes a loss of several percent of the gross domestic product of industrialized nations every year. Other major impacts of corrosion may be challenging to estimate, such as loss of productivity, but are no less significant to society than pure monetary loss. Although corrosion processes are inevitable, their rate of progression can be significantly curtailed by appropriate mitigation strategies. Many examples exist of how mitigation was successfully achieved after corrosion problems were observed and often became the limiting factor in the engineering lifetime of an application. Corrosion research has been inspired by application needs, seeking to under- stand the specific details of the mechanisms of corrosion. Mitigation, which is a corrosion engineering activity, has been most successful when it has been guided by an understanding of the forces driving corrosion processes.

OCR for page 11