89. Stutte, G.W., Monje, O., Goins, G.D., and Tripathy, B.C. 2005. Microgravity effects on thylakoid, single leaf, and whole canopy photosynthesis of dwarf wheat. Planta 223(1):46-56.

90. Tripathy, B.C., Brown, C.S., Levine, H.G., and Krikorian, A.D. 1996. Growth and photosynthetic responses of wheat plants grown in space. Plant Physiology 110(3):801-806.

91. McLean, R.J., Cassanto, J.M., Barnes, M.B., and Koo, J.H. 2001. Bacterial biofilm formation under microgravity conditions. FEMS Microbiology Letters 195(2):115-119.

92. Wilson, J.W., Ott, C.M., Höner zu Bentrup, K., Ramamurthy, R., Quick, L., Porwollik, S., Cheng, P., McClelland, M., Tsaprailis, G., Radabaugh, T., Hunt, A., et al. 2007. Space flight alters bacterial gene expression and virulence and reveals a role for global regulator Hfq. Proceedings of the National Academy of Sciences U.S.A. 104(41):16299-16304.

93. Ng, W.L., and Bassler, B.L. 2009. Bacterial quorum-sensing network architectures. Annual Review of Genetics 43:197-222.

94. Evans, C.A., Robinson, J.A., Tate-Brown, J., Thumm, T., Crespo-Richey, J., Baumann, D., and Rhatigan, J. 2008. International Space Station Science Research Accomplishments During the Assembly Years: An Analysis of Results from 2000-2008. NASA/TP-2009-213146-REVISION A. NASA Center for AeroSpace Information, Hanover, Md.

95. Bishop, D.L., Levine, H.G., Kropp, B.R., and Anderson, A.J. 1997. Seedborne fungal contamination: Consequences in space-grown wheat. Phytopathology 87(11):1125-1133.

96. Leach, J.E., Ryba-White, M., Sun, Q., Wu, C.J., Hilaire, E., Gartner, C., Nedukha, O., Kordyum, E., Keck, M., Leung, H., and Guikema, J.A. 2001. Plants, plant pathogens, and microgravity—A deadly trio. Gravitational and Space Biology Bulletin 14(2):15-23.

97. Ryba-White, M., Nedukha, O., Hilaire, E., Guikema, J.A., Kordyum, E., and Leach, J.E. 2001. Growth in microgravity increases susceptibility of soybean to a fungal pathogen. Plant Cell Physiology 42(6):657-664.

98. Galston, A.W. 1992. Photosynthesis as a basis for life-support on Earth and in space. Bioscience 42(7):490-493.

99. MacElroy, R.D., and Bredt, J. 1985. Controlled Ecological Life Support System: Life Support Systems in Space Travel. NASA Conference Publication 2378. NASA Ames Research Center, Moffett Field, Calif.

100. NASA Office of Space Science and Applications, Life Sciences Division. 1985. Controlled Ecological Life Support Systems (CELSS) Program Plan. NASA, Washington, D.C.

101. Bugbee, B.G., and Salisbury, F.B. 1988. Exploring the limits of crop productivity. 1. Photosynthetic efficiency of wheat in high irradiance environments. Plant Physiology 88(3):869-878.

102. Knight, S.L., and Mitchell, C.A. 1983. Enhancement of lettuce yield by manipulation of light and nitrogen nutrition. Journal of the American Society for Horticultural Science 108(5):750-754.

103. Raper, C.D., Vessey, J.K., and Henry, L.T. 1991. Increase in nitrate uptake by soybean plants during interruption of the dark period with low intensity light. Physiologia Plantarum 81(2):183-189.

104. Wheeler, R.M., and Tibbitts, T.W. 1987. Utilization of potatoes for life-support-systems in space. 3. Productivity at successive harvest dates under 12-H and 24-H photoperiods. American Potato Journal 64(6):311-320.

105. Bugbee, B., and Monje, O. 1992. The limits of crop productivity. Bioscience 42(7):494-502.

106. Knight, S., and Mitchell, C.A. 1987. Stimulating productivity of hydroponic lettuce by foliar application of triacontanol. Horticultural Science 22:1307-1309.

107. Salisbury, F.B., and Bugbee, B. 1984. Wheat farming in a lunar base. Pp. 635-645 in Lunar Bases and Space Activities of the 21st Century (W.W. Mendel, ed.). Lunar and Planetary Institute, Houston, Tex.

108. Wheeler, R.M. 1996. Gas balances in a plant-based CELSS. Pp. 207-216 in Plants in Space Biology (H. Suge, ed.). Tohoku University, Sendai, Japan.

109. Averner, M. 1993. NASA Advanced Life Support Program Plan. Office of Life and Microgravity Sciences and Applications Division, NASA, Washington, D.C.

110. Hill, W.A., Loretan, P.A., Bonsi, C.K., Morris, C.E., Lu, J.Y., and Ogbuehi, C. 1989. Utilization of sweet potatoes in controlled ecological life support systems (CELSS). Advances in Space Research 9:1631-1635.

111. Hoff, J.E., Howe, J.M., and Mitchell, C.A. 1982. Nutritional and Cultural Aspects of Plant Species Selection for a Controlled Ecological Life Support System. NASA Contractor Report 166324. NASA Ames Research Center, Moffett Field, Calif.

112. Ohler, T.O., and Mitchell, C.A. 1995. Effects of carbon dioxide level and plant density on cowpea canopy productivity for a bioregenerative life support system. Life Support and Biosphere Science 2:3-9.

113. Tibbits, T.W., and Alford, D.K. 1982. Controlled Ecological Life Support System Use of Higher Plants. NASA Conf. Publ. 2231. NASA Ames Research Center, Moffett Field, Calif.

114. Volk, G.M., and Mitchell, C.A. 1995. Photoperiod shift effects on yield characteristics of rice. Crop Science 35(6):1631-1635.

115. Stutte, G.W., Monje, O., Goins, G.D., and Tripathy, B.C. 2005. Microgravity effects on thylakoid, single leaf, and whole canopy photosynthesis of dwarf wheat. Planta 223(1):46-56.

The National Academies of Sciences, Engineering, and Medicine
500 Fifth St. N.W. | Washington, D.C. 20001

Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement