• The extent to which the results of the research are uniquely needed by NASA, as opposed to any other agencies (Needs Unique to NASA Exploration Programs)

• The extent to which the results of the research can be synergistic with other agencies’ needs (Research Programs That Could Be Dual-Use)

• The extent to which the research must use the space environment to achieve useful knowledge (Research Value of Using Reduced-Gravity Environment)

• The extent to which the results of the research could lead to either faster or better solutions to terrestrial problems or to terrestrial economic benefit (Ability to Translate Results to Terrestrial Needs)

Facilities, Platforms, and the International Space Station

Facility and platform requirements are identified for each of the various areas of research discussed in this report. Free-flyers, suborbital spaceflights, parabolic aircraft, and drop towers are all important platforms, each offering unique advantages that might make them the optimal choice for certain experiments. Ground-based laboratory research is critically important in preparing most investigations for eventual flight, and there are some questions that can be addressed primarily through ground research. Eventually, access to lunar and planetary surfaces will make it possible to conduct critical studies in the partial-gravity regime and will enable test bed studies of systems that will have to operate in those environments. These facilities enable studies of the effects of various aspects of the space environment, including reduced gravity, increased radiation, vacuum and planetary atmospheres, and human isolation.

Typically, because of the cost and scarcity of the resource, spaceflight research is part of a continuum of efforts that extend from laboratories and analog environments on the ground, through other low-gravity platforms as needed and available, and eventually into extended-duration flight. Although research on the ISS is only one component of this endeavor, the capabilities provided by the ISS are vital to answering many of the most important research questions detailed in this report. The ISS provides a unique platform for research, and past NRC studies have noted the critical importance of its capabilities to support the goal of long-term human exploration in space. These include the ability to perform experiments of extended duration, access to human subjects, the ability to continually revise experiment parameters based on previous results, the flexibility in experimental design provided by human operators, and the availability of sophisticated experimental facilities with significant power and data resources. The ISS is the only existing and available platform of its kind, and it is essential that its presence and dedication to research for the life and physical sciences be fully utilized in the decade ahead.

With the retirement of the space shuttle program in 2011, it will also be important for NASA to foster interactions with the commercial sector, particularly commercial flight providers, in a manner that addresses research needs, with attention to such issues as control of intellectual property, technology transfer, conflicts of interest, and data integrity.

Science Impact on Defining Space Exploration

Implicit in this report are integrative visions for the science advances necessary to underpin and enable revolutionary systems and bold exploration architectures for human space exploration. Impediments to revitalizing the U.S. space exploration agenda include costs, past inabilities to predict costs and schedule, and uncertainties about mission and crew risk. Research community leaders recognize their obligations to address those impediments. The starting point of much of space-related life sciences research is the reduction of risks to missions and crews. Thus, the recommended life sciences research portfolio centers on an integrated scientific pursuit to reduce the health hazards facing space explorers, while also advancing fundamental scientific discoveries. Similarly, revolutionary


See, for example, National Research Council, Review of NASA Plans for the International Space Station, The National Academies Press, Washington, D.C., 2006.

The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement