National Academies Press: OpenBook
« Previous: Front Matter
Suggested Citation:"Summary." National Research Council. 2010. Review of the St. Johns River Water Supply Impact Study: Report 3. Washington, DC: The National Academies Press. doi: 10.17226/13052.
×
Page 1
Suggested Citation:"Summary." National Research Council. 2010. Review of the St. Johns River Water Supply Impact Study: Report 3. Washington, DC: The National Academies Press. doi: 10.17226/13052.
×
Page 2

Below is the uncorrected machine-read text of this chapter, intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text of each book. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

Summary The St. Johns River Water Management District in northeast Florida is studying the feasibility of withdrawing water from the St. Johns River for the purpose of augmenting future public water supply. The District requested that its Water Supply Impact Study (WSIS) be reviewed by a committee of the National Research Council (NRC) as it progresses. This third report from the NRC committee focuses on the hydrology and hydrodynamics workgroup. A brief summary of the report’s major conclusions and recommendations is presented below. The main output of the hydrologic and hydrodynamic models is to predict stage, flow, and salinity at various points along the river given potential changes in water withdrawals— information which will then be used by the six ecological workgroups to better understand impacts. The committee is generally satisfied that the modeling approach of the hydrology and hydrodynamics workgroup reflects the state of the science and available data and information. As in previous reports, the criticisms mentioned in this report are intended to improve the workgroup’s efforts as the modeling evolves to support future water supply planning in an adaptive management framework. Modeling of the St. Johns River watershed, which is integral to understanding the hydrologic response of the river to changes in water withdrawal, relies heavily on accurate estimates of future land use. The committee cautions that the land use relationships developed for the current WSIS may not hold in the future, especially if the actual rate of population increase or its impact on the hydrologic response of the resulting change in land use is significantly different from the current forecast. It is strongly recommended that the District revisit and update the population and resulting land use projections in future periodic reviews. The hydrologic model was calibrated using observed meteorology with fixed (1995) land use over the decade 1995 to 2006, such that the model’s reliability is limited outside its calibrated time span (e.g., for the 2030 conditions). Because insight can be obtained by a quantitative evaluation of the model outside its calibration range using newer data, it is recommended that the District apply the model (without further calibration) to 2009–2010 land use conditions and 2009–2010 observed rainfall and streamflow to provide a basic understanding of how the model behaves for a case outside the calibration range. In addition, whether the hydrologic model can adequately quantify confounding processes outside the calibration range is unknown. Confounding processes are processes whose effects are large but in the opposite direction such that they tend to cancel each other out. Even with the best possible model, confounding processes outside the calibration range can lead to uncertainty in the prediction that is larger than the magnitude of the predicted impact. The District’s analysis of model results 1 P R E P U B L I C A T I O N C O P Y

2 Review of the St. Johns River Water Supply Impact Study: Report 3 across the scenarios should carefully consider which scenarios have confounding processes and which do not. The hydrologic and hydrodynamic models provide reasonable approximations of the major fluxes through the watershed, with the exception of some wetlands hydrologic processes. The following concerns are noted. First, the District should consider supplementing rain gage data with NEXRAD Doppler data for scenario testing. Second, due to a changing climate, decisions based on model predictions using historic rainfall conditions should be revisited as the state-of-the-science improves. Finally, as computational power increases over the next decade, the grid resolution of the hydrodynamic model should increase to 4X or even 16X in order to not limit the model’s ability to represent physical/ecological dynamics driven by salinity gradients. For reasons detailed in the report, the HSPF model used to predict hydrologic changes for the different water withdrawal scenarios has limited value for wetlands. The District is urged to continue developing the Hydroperiod Tool and analyzing the empirical water level data available from minimum flow and levels (MFL) transects in order to determine the correspondence between river stage and wetland hydroperiod. These tools and data have the potential to provide considerable insight into the response of the different wetland types to water withdrawals. Results of the hydrologic/hydrodynamic simulations, expressed in terms of changes in flow and water stage, were generated for various scenarios at two locations in the watershed. The modeling revealed that flow and stage would generally increase under the proposed full withdrawal condition, assuming management of the upper basin to bring water back into the system and the 2030 land use condition (which would increase the contribution of stormwater to river flow). Given these results, which were unexpected at the onset of the WSIS, the committee urges that as much attention be given to potential water quality and other environmental impacts of future increases in flows and levels and in the temporal distribution and routing of flows as to the potential for decreases in flow and levels. P R E P U B L I C A T I O N C O P Y

Next: Chapter 1 Introduction »
Review of the St. Johns River Water Supply Impact Study: Report 3 Get This Book
×
 Review of the St. Johns River Water Supply Impact Study: Report 3
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

The St. Johns River Water Management District in northeast Florida is studying the feasibility of withdrawing water from the St. Johns River for the purpose of augmenting future public water supply. The District requested that its Water Supply Impact Study (WSIS) be reviewed by a committee of the National Research Council (NRC) as it progresses. This third report from the NRC committee focuses on the hydrology and hydrodynamics workgroup.

READ FREE ONLINE

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  6. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  7. ×

    View our suggested citation for this chapter.

    « Back Next »
  8. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!