CONCLUSIONS

The rapid development of simulations and games for science learning has outpaced their grounding in theory and research on learning and assessment. Recent research on simulations uses assessments that are not well aligned with the capacity of these technologies to advance multiple science learning goals. More generally, state and district science assessment programs are largely incapable of measuring the multiple science learning goals that simulations and games support. However, a new generation of assessments is attempting to use technology to break the mold of traditional, large-scale summative testing practices. Science assessment is leading the way in exploring the presentation and interpretation of complex, multifaceted problem types and assessment approaches.


Conclusion: Games and simulations hold enormous promise as a means for measuring important aspects of science learning that have otherwise proven challenging to assess in both large-scale and classroom testing contexts. Work is currently under way that provides examples of the use of simulations for purposes that include both formative and summative assessment in classrooms and large-scale testing programs, such as NAEP and PISA.


In an education system driven by standards and external, large-scale assessments, simulations and games are unlikely to be more widely used until their capacity to advance multiple science learning goals can be demonstrated via assessment results. This chapter provides examples of current work to provide such summative assessment results, by embedding assessment in game play. These examples suggest that it is valuable to clearly specify the desired learning outcomes of a game, so that assessment tasks can be designed to provide evidence aligned with these learning outcomes. They also illuminate the potential of new measurement methods to draw inferences about student science learning from the extensive data generated by students’ interactions with the games—for the purpose of both summative and formative assessment.


Conclusion: Games will not be useful as alternative environments for formative and summative assessment until assessment tasks can be embedded effectively and unobtrusively into them. Three design principles may aid this process. First, it is important to establish learning goals at the outset of game design, to ensure that the game play supports these goals. Second, the design should include assessment of performance at key points in the game and use the resulting information to move the player to the most appropriate level of the game to support individual learning. In this way, game play, assessment, and learning are intertwined. Third, the extensive data generated by a



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement