contributes to uncertainty in assessing environmental effects, are also pointed out in the following areas:

  • GHG emissions
  • Air quality
  • Water quality
  • Water quantity and consumptive use
  • Soil
  • Biodiversity
  • Ecosystem services
  • It uses regional environmental assessments of biofuel production as an illustration because the effects of biofuel production are location-specific, and conclusions drawn from regional environmental assessments could differ from an assessment of cumulative effects across the nation.
  • It discusses opportunities to minimize negative environmental effects at the end of the chapter.

Although the committee stresses the importance of comparing environmental effects of biofuels to petroleum-based fuels, environmental effects of petroleum-based fuels have been covered in other publications (NRC, 2003, 2010a) and are beyond the scope of this study.

LIFE-CYCLE APPROACH FOR ASSESSING ENVIRONMENTAL EFECTS: AN OVERVIEW

Biofuels affect the environment at all stages of their production and use. Some effects are easily noticed (for example, odors emanating from an ethanol plant). Others are less apparent, including those that result from activities along the biofuel supply chain (for example, nitrate leaching into surface waters as a result of nitrogen fertilizer application on corn fields) and those that could occur beyond the supply chain via market-mediated effects (for example, loss of biodiversity upon land-use change induced by higher corn prices). Different effects can occur at local, regional, national, or global scales. Some of these effects are easily quantified while others are difficult to measure.

To better understand the suite of environmental effects associated with biofuels, researchers commonly turn to the method of life-cycle assessment (LCA). At the outset, researchers need to define the goal and scope of LCA. For example, researchers need to consider whether the goal is to assess the effects of biofuel produced at an individual biofuel production facility, the average effect of biofuel produced for the entire nation, or the effect of biofuel produced as a result of a policy mandating additional production. Then, an inventory of the resources used and net quantities of substances emitted as a result of biofuel production and use is compiled. This inventory is used to prepare an impact assessment that quantifies the ultimate effects on human health, ecosystem function, and natural resource depletion. Numerous methods for compiling inventories and conducting impact assessments exist, all of which have particular strengths and limitations in their modeling of specific processes and the availability and quality of data used to populate these models.

LCA is a valuable tool for quantifying the environmental effects of biofuels, yet widespread misinterpretation of the results from studies using different assessment methods has led to great confusion. More often than not, this confusion arises when conclusions from these studies are reported without mention of the particular framework and assumptions under which the analyses were conducted. For example, statements such as “this biofuel releases



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement