In contrast, planting perennial bioenergy crops in place of annual crops could potentially enhance carbon storage in that site.

Indirect land-use change occurs if land used for production of biofuel feedstocks causes new land-use changes elsewhere through market-mediated effects. The production of biofuel feedstocks can constrain the supply of commodity crops and raise prices. If agricultural growers anywhere in the world respond to the market signals (higher commodity prices) by expanding production of the displaced commodity crop, indirect land-use change occurs. This process might ultimately lead to conversion of noncropland (such as forests or grassland) to cropland. Because agricultural markets are intertwined globally, production of bioenergy feedstock in the United States will result in land-use and land-cover changes somewhere in the world, but the extent of those changes and their net effects on GHG emissions are uncertain.

Biofuels produced from residues or waste products, such as corn stover and municipal solid waste, will not contribute much GHG emissions from land-use or land-cover changes as long as adequate residue is left in the field to maintain soil carbon. However, it is not economically and environmentally feasible to produce enough biomass to meet RFS2 through crop residue or municipal solid waste. Therefore, dedicated energy crops will have to be grown to meet the mandate, which will likely require conversion of uncultivated cropland or the displacement of commodity crops and pastures. The extent of market-mediated land-use change and the associated GHG emissions as a result of increasing biofuels and dedicated bioenergy crop production in the United States are difficult to estimate and highly uncertain. Although RFS2 imposes restrictions to discourage bioenergy feedstock producers from land-clearing or land-cover change in the United States that would result in net GHG emissions, the policy cannot prevent market-mediated effects nor control land-use or land-cover changes in other countries. Therefore, the extent to which biofuel produced from dedicated energy crops will result in savings in GHG emissions compared to using petroleum is uncertain.

ECONOMIC EFFECTS OF INCREASING BIOFUEL PRODUCTION

Land Prices

FINDING: Absent major increases in agricultural yields and improvement in the efficiency of converting biomass to fuels, additional cropland will be required for cellulosic feedstock production; thus, implementation of RFS2 is expected to create competition among different land uses, raise cropland prices, and increase the cost of food and feed production.

Cropland acreage in the United States has been declining as it has in all developed countries. If the United States produces 16 billion gallons of ethanol-equivalent cellulosic biofuels by 2022, 30-60 million acres of land might be required for cellulosic biomass feedstock production, thereby creating competition among land uses. Although biofuels produced from crop and forest residues and from municipal solid wastes could reduce the amount of land needed for cellulosic feedstock production, those sources are inadequate to supply 16 billion gallons of ethanol-equivalent cellulosic biofuels, particularly if a proportion of crop and forest residues are left in the field to maintain soil quality.

Food and Feed Prices

FINDING: Food-based biofuel is one of many factors that contributed to upward price pressure on agricultural commodities, food, and livestock feed since 2007; other factors



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement