a study does not answer questions about intake of essential nutrients. There is no military equivalent of NHANES data (i.e., health and nutritional data on adults and children in the United States) on food consumption and nutrient intakes in theater to enable meaningful recommendations for preventive nutrition prior to the occurrence of TBI. A clear picture of the nutrient and food intake characterizing the nutritional profile accompanying various severities and stages of TBI is likewise necessary to make nutrition recommendations for TBI recovery. This committee believes that knowing the nutrition status of a TBI patient will be essential to determine whether supplementation of specific nutrients would improve health outcomes. In addition, information about nutrition status of TBI patients will help elucidate whether a particular nutrient, dietary supplement, or diet taken prior to the injury is associated with outcomes of TBI. It is also important to collect data on the consumption of other substances that might interact with these nutrients, such as caffeine, alcohol, nicotine, and medications, in conjunction with the assessment of essential nutrient intake.

RECOMMENDATION 5-1. DoD should conduct dietary intake assessments in different military settings (e.g., when eating in military dining facilities or when subsisting on a predominantly ration-based diet) both predeployment and during deployment to determine the nutritional status of soldiers as a basis for recommending increases in intake of specific nutrients that may provide resilience to TBI.

RECOMMENDATION 5-2. Routine dietary intake assessments of TBI patients in medical treatment facilities should be undertaken as soon after hospitalization as possible to estimate preinjury nutrition status as well as to provide optimal nutritional intake throughout the various stages of treatment.

RECOMMENDATION 5-3. In individuals with TBI, DoD should estimate preinjury and postinjury dietary intake or status for those nutrients, dietary supplements, and diets that might show a relationship to TBI outcome. For example, based on the current evidence, the committee recommends collecting those estimates for creatine, n-3 fatty acids, choline, and vitamin D. The data could be used to investigate potential relationships between preinjury nutritional intake or status and recovery progress. Such data also would show possible synergistic effects between nutrients and dietary supplements.


Bailey, R. L., K. W. Dodd, J. A. Goldman, J. J. Gahche, J. T. Dwyer, A. J. Moshfegh, C. T. Sempos, and M. F. Picciano. 2010. Estimation of total usual calcium and vitamin D intakes in the United States. Journal of Nutrition 140(4):817–822.

Baker-Fulco, C. J., G. P. Bathalon, M. E. Bovill, and H. R. Lieberman. 2001. Military Dietary Reference Intakes: Rationales for tabled values. Technical Note TN-00/10. Natick, MA: U.S. Army Research Insitute of Environmental Medicine.

Berry, C., A. Salim, R. Alban, J. Mirocha, D. R. Margulies, and E. J. Ley. 2010. Serum ethanol levels in patients with moderate to severe traumatic brain injury influence outcomes: A surprising finding. American Surgeon 76(10):1067–1070.

Dash, P. K., A. N. Moore, M. R. Moody, R. Treadwell, J. L. Felix, and G. L. Clifton. 2004. Post-trauma administration of caffeine plus ethanol reduces contusion volume and improves working memory in rats. Journal of Neurotrauma 21(11):1573–1583.

Ervin, R. B., J. D. Wright, and D. Reed-Gillette. 2004. Prevalence of leading types of dietary supplements used in the Third National Health and Nutrition Examination Survey, 1988–94. Advance Data (349):1–7.

Garrouste-Orgeas, M., G. Troche, E. Azoulay, A. Caubel, A. de Lassence, C. Cheval, L. Montesino, M. Thuong, F. Vincent, Y. Cohen, and J. F. Timsit. 2004. Body mass index—An additional prognostic factor in ICU patients. Intensive Care Medicine 30(3):437–443.

The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement