Box 1.1
Statement of Task

Continuity of satellite ocean color data and associated climate research products are presently at significant risk for the U.S. ocean color community. Temporal, radiometric, spectral, and geometric performance of future global ocean color observing systems must be considered in the context of the full range of research and operational/application user needs. This study aims to identify the ocean color data needs for a broad range of end users, develop a consensus for the minimum requirements, and outline options to meet these needs on a sustained basis.

An ad hoc committee will assess lessons learned in global ocean color remote sensing from the SeaWiFS/MODIS era to guide planning for acquisition of future global ocean color radiance data to support U.S. research and operational needs. In particular, the committee will assess the sensor and system requirements necessary to produce high-quality global ocean color climate data records that are consistent with those from SeaWiFS/MODIS. The committee will also review the operational and research objectives, such as described in the Ocean Research Priorities Plan and Implementation Strategy, for the next generation of global ocean color satellite sensors and provide guidance on how to ensure both operational and research goals of the oceanographic community are met. In particular the study will address the following:

1. Identify research and operational needs, and the associated global ocean color sensor and system high-level requirements for a sustained, systematic capability to observe ocean color radiance (OCR) from space;

2. Review the capability, to the extent possible based on available information, of current and planned national and international sensors in meeting these requirements (including but not limited to: VIIRS on NPP and subsequent JPSS spacecrafts; MERIS on ENVISAT and subsequent sensors on ESA’s Sentinel-3; S-GLI on JAXA’s GCOM-C; OCM-2 on ISRO’s Oceansat-2; COCTS on SOA’s HY-1; and MERSI on CMA’s FY-3);

3. Identify and assess the observational gaps and options for filling these gaps between the current and planned sensor capabilities and timelines; define the minimum observational requirements for future ocean color sensors based on future oceanographic research and operational needs across a spectrum of scales from basin-scale synoptic to local process study, such as expected system launch dates, lifetimes, and data accessibility;

4. Identify and describe requirements for a sustained, rigorous on-board and vicarious calibration and data validation program, which incorporates a mix of measurement platforms (e.g., satellites, aircraft, and in situ platforms such as ships and buoys) using a layered approach through an assessment of needs for multiple data user communities; and

5. Identify minimum requirements for a sustained, long-term global ocean color program within the United States for the maintenance and improvement of associated ocean biological, ecological, and biogeochemical records, which ensures continuity and overlap among sensors, including plans for sustained rigorous on-orbit sensor inter-calibration and data validation; algorithm development and evaluation; data processing, re-processing, distribution, and archiving; as well as recommended funding levels for research and operational use of the data.

The review will also evaluate the minimum observational research requirements in the context of relevant missions outlined in previous NRC reports, such as the NRC “Decadal Survey” of Earth Science and Applications from Space. The committee will build on the Advance Plan developed by NASA’s Ocean Biology and Biogeochemistry program and comment on future ocean color remote sensing support of oceanographic research goals that have evolved since the publication of that report. Also included in the review will be an evaluation of ongoing national and international planning efforts related to ocean color measurements from geostationary platforms.



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement