employed not only to identify potential high-energy molecules but also to develop a strategy by which they may be synthesized?

The WMRD program in advanced weapons concepts is designed to identify projects that have high risk and high payoff for the Army. Innovative ideas are sought from WMRD researchers and leadership that bear on the mission of the Lethality Division and meet immediate or perceived future needs of the Army. The number of proposals considered has grown from 4 in FY 2009, to 11 in FY 2010, to 31 for FY 2011, demonstrating the success in stimulating idea generation within the division. Interaction with the warfighter has occurred in evaluating the utility of some proposals. Input has also been sought from the U.S. Army Training and Doctrine Command and other Army customers.

Based on the success of this program in advanced weapons concepts in the Lethality Division, it appears that similar programs should be launched in other areas within WMRD’s portfolio, so long as the criteria for funding are such that high-risk, high-payoff projects are likely to be funded over those that are deemed to be more conventional and that program funding is not used to augment or supplant standard funding mechanisms. Researchers in the Lethality Division should be encouraged to identify customer proponents to enhance the likelihood that standard project funding follows closely on the success of the initial project.

WMRD should consider conducting a comprehensive trade-off study for the SBAM munition (if this has not already been done) and using the results of such a study to help guide and optimize the munition design concept.

OVERALL TECHNICAL QUALITY OF THE WORK

The Weapons and Materials Research Directorate continues to conduct science and technology of very wide breadth and great depth, protecting warfighters and providing them with robust lethal instruments to carry out their mission objectives.

The fact that even in time of war in Iraq and Afghanistan when short-term tactical problems such as protecting the warfighter from IEDs have been given to WMRD, the directorate has maintained an excellent series of S&T programs to invest in science and engineering programs for meeting future Army needs. WMRD’s integrated expertise in warfighter protection and the development of lethal devices, systems, and platforms to support the warfighter remain excellent—a shining example of balancing fundamental science and engineering with the short-term tactical needs of the Army and DoD.

High-quality research is being carried out in almost all WMRD areas of interest: materials development and characterization thrusts, model development, and simulation. The WMRD-led S&T effort on the M855A1 round and the affordable precision munitions program are examples of the strong technical expertise embodied in WMRD. WMRD is strongly encouraged to continue its focus on capturing and controlling the intellectual property and modeling and simulation expertise in the protection and lethality areas.

As the path to the development of advanced modeling and simulation tools aimed at predictive capability to support future systems, WMRD is strongly encouraged to continually refine models coupled to systematic validation experiments over a range of scales and to be mindful of quantitative assessment of the margins and uncertainties in their numerics and simulations.

WMRD and ARL have restarted a basic energetics synthesis program. This is a very exciting development and an important reinvestment for the entire country, including DoD and national defense programs in general. ARL’s vision and investment in the future are commendable.



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement