Core Idea PS1

Matter and Its Interactions

How can one explain the structure, properties, and interactions of matter?

The existence of atoms, now supported by evidence from modern instruments, was first postulated as a model that could explain both qualitative and quantitative observations about matter (e.g., Brownian motion, ratios of reactants and products in chemical reactions). Matter can be understood in terms of the types of atoms present and the interactions both between and within them. The states (i.e., solid, liquid, gas, or plasma), properties (e.g., hardness, conductivity), and reactions (both physical and chemical) of matter can be described and predicted based on the types, interactions, and motions of the atoms within it. Chemical reactions, which underlie so many observed phenomena in living and nonliving systems alike, conserve the number of atoms of each type but change their arrangement into molecules. Nuclear reactions involve changes in the types of atomic nuclei present and are key to the energy release from the sun and the balance of isotopes in matter.

PS1.A: STRUCTURE AND PROPERTIES OF MATTER

How do particles combine to form the variety of matter one observes?

While too small to be seen with visible light, atoms have substructures of their own. They have a small central region or nucleus—containing protons and neutrons—surrounded by a larger region containing electrons. The number of protons in the atomic nucleus (atomic number) is the defining characteristic of each element; different isotopes of the same element differ in the number of neutrons only. Despite the immense variation and number of substances, there are only some 100 different stable elements.

Each element has characteristic chemical properties. The periodic table, a systematic representation of known elements, is organized horizontally by increasing atomic number and vertically by families of elements with related chemical properties. The development of the periodic table (which occurred well before atomic substructure was understood) was a major advance, as its patterns suggested and led to the identification of additional elements with particular properties. Moreover, the table’s patterns are now recognized as related to the atom’s outermost electron patterns, which play an important role in explaining chemical reactivity and bond formation, and the periodic table continues to be a useful way to organize this information.



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement