PS3.D: ENERGY IN CHEMICAL PROCESSES AND EVERYDAY LIFE

How do food and fuel provide energy?
If energy is conserved, why do people say it is produced or used?

In ordinary language, people speak of “producing” or “using” energy. This refers to the fact that energy in concentrated form is useful for generating electricity, moving or heating objects, and producing light, whereas diffuse energy in the environment is not readily captured for practical use. Therefore, to produce energy typically means to convert some stored energy into a desired form—for example, the stored energy of water behind a dam is released as the water flows downhill and drives a turbine generator to produce electricity, which is then delivered to users through distribution systems. Food, fuel, and batteries are especially convenient energy resources because they can be moved from place to place to provide processes that release energy where needed. A system does not destroy energy when carrying out any process. However, the process cannot occur without energy being available. The energy is also not destroyed by the end of the process. Most often some or all of it has been transferred to heat the surrounding environment; in the same sense that paper is not destroyed when it is written on, it still exists but is not readily available for further use.

Naturally occurring food and fuel contain complex carbon-based molecules, chiefly derived from plant matter that has been formed by photosynthesis. The chemical reaction of these molecules with oxygen releases energy; such reactions provide energy for most animal life and for residential, commercial, and industrial activities.

Electric power generation is based on fossil fuels (i.e., coal, oil, and natural gas), nuclear fission, or renewable resources (e.g., solar, wind, tidal, geothermal, and hydro power). Transportation today chiefly depends on fossil fuels, but the use of electric and alternative fuel (e.g., hydrogen, biofuel) vehicles is increasing. All forms of electricity generation and transportation fuels have associated economic, social, and environmental costs and benefits, both short and long term. Technological advances and regulatory decisions can change the balance of those costs and benefits.

Although energy cannot be destroyed, it can be converted to less useful forms. In designing a system for energy storage, for energy distribution, or to perform some practical task (e.g., to power an airplane), it is important to design for maximum efficiency—thereby ensuring that the largest possible fraction of the energy is used for the desired purpose rather than being transferred out of the



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement