system in unwanted ways (e.g., through friction, which eventually results in heat energy transfer to the surrounding environment). Improving efficiency reduces costs, waste materials, and many unintended environmental impacts.

Grade Band Endpoints for PS3.D

By the end of grade 2. When two objects rub against each other, this interaction is called friction. Friction between two surfaces can warm of both of them (e.g., rubbing hands together). There are ways to reduce the friction between two objects.

By the end of grade 5. The expression “produce energy” typically refers to the conversion of stored energy into a desired form for practical use—for example, the stored energy of water behind a dam is released so that it flows downhill and drives a turbine generator to produce electricity. Food and fuel also release energy when they are digested or burned. When machines or animals “use” energy (e.g., to move around), most often the energy is transferred to heat the surrounding environment.

img

The energy released by burning fuel or digesting food was once energy from the sun that was captured by plants in the chemical process that forms plant matter (from air and water). (Boundary: The fact that plants capture energy from sunlight is introduced at this grade level, but details of photosynthesis are not.)

It is important to be able to concentrate energy so that it is available for use where and when it is needed. For example, batteries are physically transportable energy storage devices, whereas electricity generated by power plants is transferred from place to place through distribution systems.

By the end of grade 8. The chemical reaction by which plants produce complex food molecules (sugars) requires an energy input (i.e., from sunlight) to occur. In this reaction, carbon dioxide and water combine to form carbon-based organic molecules and release oxygen. (Boundary: Further details of the photosynthesis process are not taught at this grade level.)



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement