atoms. All electromagnetic radiation travels through a vacuum at the same speed, called the speed of light. Its speed in any other given medium depends on its wavelength and the properties of that medium.

When light or longer wavelength electromagnetic radiation is absorbed in matter, it is generally converted into thermal energy (heat). Shorter wavelength electromagnetic radiation (ultraviolet, X-rays, gamma rays) can ionize atoms and cause damage to living cells. Photovoltaic materials emit electrons when they absorb light of a high-enough frequency.

Atoms of each element emit and absorb characteristic frequencies of light, and nuclear transitions have distinctive gamma ray wavelengths. These characteristics allow identification of the presence of an element, even in microscopic quantities.


How are instruments that transmit and detect waves used to extend human senses?

Understanding of waves and their interactions with matter has been used to design technologies and instruments that greatly extend the range of phenomena that can be investigated by science (e.g., telescopes, microscopes) and have many useful applications in the modern world.

Light waves, radio waves, microwaves, and infrared waves are applied to communications systems, many of which use digitized signals (i.e., sent as wave pulses) as a more reliable way to convey information. Signals that humans cannot sense directly can be detected by appropriately designed devices (e.g., telescopes, cell phones, wired or wireless computer networks). When in digitized form, information can be recorded, stored for future recovery, and transmitted over long distances without significant degradation.


Medical imaging devices collect and interpret signals from waves that can travel through the body and are affected by, and thus gather information about, structures and motion within it (e.g., ultrasound, X-rays). Sonar (based on sound pulses) can be used to measure the depth of the sea, and a system based on laser pulses can measure the distance to objects in space, because it is

The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement