img Evolution and its underlying genetic mechanisms of inheritance and variability are key to understanding both the unity and the diversity of life on Earth. img

begins with a discussion of the converging evidence for shared ancestry that has emerged from a variety of sources (e.g., comparative anatomy and embryology, molecular biology and genetics). It describes how variation of genetically determined traits in a population may give some members a reproductive advantage in a given environment. This natural selection can lead to adaptation, that is, to a distribution of traits in the population that is matched to and can change with environmental conditions. Such adaptations can eventually lead to the development of separate species in separated populations. Finally, the idea describes the factors, including human activity, that affect biodiversity in an ecosystem, and the value of biodiversity in ecosystem resilience. See Box 6-1 for a summary of these four core ideas and their components.

These four core ideas, which represent basic life sciences fields of investigation—structures and processes in organisms, ecology, heredity, and evolution—have a long history and solid foundation based on the research evidence established by many scientists working across multiple fields. The role of unifying principles in advancing modern life sciences is articulated in The Role of Theory in Advancing 21st-Century Biology and A New Biology for the 21st Century [2, 3]. In developing these core ideas, the committee also drew on the established K-12 science education literature, including National Science Education Standards and Benchmarks for Science Literacy [4, 5]. The ideas also incorporate contemporary documents, such as the Science College Board Standards for College Success [6], and the ideas are consistent with frameworks for national and international assessments, such as those of the National Assessment of Educational Progress (NAEP), the Programme for International Student Assessment (PISA), and the Trends in International Mathematics and Science Study (TIMSS) [7-9]. Furthermore, the ideas align with the core concepts for biological literacy for undergraduates to build on as described in the American Association for the Advancement of Science (AAAS) report Vision and Change in Undergraduate Biology Education [10].



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement