have deep impacts on society and the environment. The impacts may not have been anticipated when the technologies were introduced (e.g., refrigerant gases that depleted stratospheric ozone) or may build up over time to levels that require mitigation (toxic pesticides, lead in gasoline). Thus the balancing of technologies’ costs, benefits, and risks is a critical element of ETS2. Box 8-2 summarizes the framework’s two ETS core ideas and their components.

The fields of science and engineering are mutually supportive. New technologies expand the reach of science, allowing the study of realms previously inaccessible to investigation; scientists depend on the work of engineers to produce the instruments and computational tools they need to conduct research. Engineers in turn depend on the work of scientists to understand how different technologies work so they can be improved; scientific discoveries are exploited to create new technologies in the first place. Scientists and engineers often work together in teams, especially in new fields, such as nanotechnology or synthetic biology that blur the lines between science and engineering. Students should come to understand these interactions and at increasing levels of sophistication as they mature. Their appreciation of the interface of science, engineering, and society should give them deeper insights into local, national, and global issues.

BOX 8-2


Core Idea ETS1: Engineering Design

ETS1.A: Defining and Delimiting an Engineering Problem

ETS1.B: Developing Possible Solutions

ETS1.C: Optimizing the Design Solution

Core Idea ETS2: Links Among Engineering, Technology, Science, and Society

ETS2.A: Interdependence of Science, Engineering, and Technology

ETS2.B: Influence of Engineering, Technology, and Science on Society and the Natural World

The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement