component of one of the core ideas in the life sciences (see Table 9-1), the other on a component of a core idea in the physical sciences (see Table 9-2).

The three dimensions will also need to be integrated into curriculum and instruction. A detailed discussion of all the ways in which practices, crosscutting concepts, and disciplinary core ideas can be integrated into curriculum and instruction is beyond the scope of the framework. However, in addition to the examples of performance expectations presented in Tables 9-1 and 9-2, we provide a single example that shows first steps toward this kind of integration. This example, which draws on the first component of the first physical science core idea—PS1.A: Structure and Properties of Matter—shows how a disciplinary core idea can be developed using particular practices and linked to particular crosscutting concepts for each grade band. It also describes some of the ways in which students might be asked to use specific practices to demonstrate their understanding of core ideas. Finally, the example incorporates boundary statements that make explicit what is not expected of students at a given level. The committee recommends that boundary statements be incorporated into standards so as to provide guidance for curriculum developers and designers of instruction. Such boundaries serve two purposes: (1) to delimit what level of detail is appropriate and (2) to indicate what knowledge related to a core idea may be too challenging for all students to master by the end of the grade band. However, any boundaries introduced here or in the specification of performance expectations will need to be subjected to further research and revisited over time, as more is learned about what level of expectation is appropriate in the context of curricula and instruction of the type envisaged in this framework.

It is important to note that this example is not intended as a complete description of instruction but only as a sketch of some experiences that can support learning of the core idea component. It illustrates how the practices both help students learn and provide a means by which they can demonstrate their understanding.


Two examples in this section illustrate how the three dimensions can be integrated into performance expectations. Table 9-1 presents the first example, which is based on a component—Organization for Matter and Energy Flow in Organisms (LS1.C)—of the first core idea in the life sciences. Table 9-2 presents the second example, which is based on a component—Structure and Properties of Matter (PS1.A)—of the first core idea in the physical sciences.

The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement