effectiveness across subjects, as teachers could be mutually supportive of one another in weaving connections across the curriculum [3]. All in all, better alignment across the standards in the different subjects would contribute to the development of the knowledge and skills that students need in order to make progress in each of their subjects.

Recommendation 13: In designing standards and performance expectations, issues related to diversity and equity need to be taken into account. In particular, performance expectations should provide students with multiple ways of demonstrating competence in science.

As discussed in Chapter 11, the committee is convinced that, given appropriate opportunities to learn and sufficient motivation, students from all backgrounds can become competent in science. It is equally important that all students be provided with opportunities to demonstrate their competence in ways that do not create unnecessary barriers. Standards should promote broadening participation in science and engineering by focusing the education system on inclusive and meaningful learning as well as on assessment experiences that maintain high academic expectations for all students.

Previous standards for K-12 science education have been criticized for obscuring the educational histories and circumstances of specific cultural groups [18]. Diversity should be made visible in the new standards in ways that might, for example, involve (a) presenting some performance tasks in the context of historical scientific accomplishments, which include a broad variety of cultural examples and do not focus exclusively on scientific discoveries made by scientists in a limited set of countries; (b) addressing the educational issues encountered by English language learners when defining performance expectations; (c) attending to the funds of knowledge that specific communities possess with regard to specific core ideas and practices (e.g., knowledge of ecosystem dynamics in Native American communities, knowledge of living organisms in agricultural communities) and with regard to performance expectations; (d) drawing on examples that are not dominated by the interests of one gender, race, or culture; (e) ensuring that students with particular learning disabilities are not excluded from appropriate science learning; and (f) providing examples of performance tasks appropriate to the special needs of such students.

The variety of issues raised by the above list illustrates the challenges of providing learning opportunities and assessments that support all students in their



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement