Students should begin learning to critique by asking questions about their own findings and those of others. Later, they should be expected to identify possible weaknesses in either data or an argument and explain why their criticism is justified. As they become more adept at arguing and critiquing, they should be introduced to the language needed to talk about argument, such as claim, reason, data, etc. Exploration of historical episodes in science can provide opportunities for students to identify the ideas, evidence, and arguments of professional scientists. In so doing, they should be encouraged to recognize the criteria used to judge claims for new knowledge and the formal means by which scientific ideas are evaluated today. In particular, they should see how the practice of peer review and independent verification of claimed experimental results help to maintain objectivity and trust in science.

Practice 8

Obtaining, Evaluating, and Communicating Information

Being literate in science and engineering requires the ability to read and understand their literatures [34]. Science and engineering are ways of knowing that are represented and communicated by words, diagrams, charts, graphs, images, symbols, and mathematics [35]. Reading, interpreting, and producing text* are fundamental practices of science in particular, and they constitute at least half of engineers’ and scientists’ total working time [36].

Even when students have developed grade-level-appropriate reading skills, reading in science is often challenging to students for three reasons. First, the jargon of science texts is essentially unfamiliar; together with their often extensive use of, for example, the passive voice and complex sentence structure, many find these texts inaccessible [37]. Second, science texts must be read so as to extract information accurately. Because the precise meaning of each word or clause may be important, such texts require a mode of reading that is quite different from reading a novel or even a newspaper. Third, science texts are multimodal [38], using a mix of words, diagrams, charts, symbols, and mathematics to communicate. Thus understanding science texts requires much more than simply knowing the meanings of technical terms.

Communicating in written or spoken form is another fundamental practice of science; it requires scientists to describe observations precisely, clarify their thinking, and justify their arguments. Because writing is one of the primary means of communicating*


*The term “text” is used here to refer to any form of communication, from printed text to video productions.

The National Academies of Sciences, Engineering, and Medicine
500 Fifth St. N.W. | Washington, D.C. 20001

Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement