img From the very start of their science education, students should be asked to engage in the communication of science, especially regarding the investigations they are conducting and the observations they are making. img

scientific text. It follows that to master the reading of scientific material, students need opportunities to engage with such text and to identify its major features; they cannot be expected simply to apply reading skills learned elsewhere to master this unfamiliar genre effectively.

Students should write accounts of their work, using journals to record observations, thoughts, ideas, and models. They should be encouraged to create diagrams and to represent data and observations with plots and tables, as well as with written text, in these journals. They should also begin to produce reports or posters that present their work to others. As students begin to read and write more texts, the particular genres of scientific text—a report of an investigation, an explanation with supporting argumentation, an experimental procedure—will need to be introduced and their purpose explored. Furthermore, students should have opportunities to engage in discussion about observations and explanations and to make oral presentations of their results and conclusions as well as to engage in appropriate discourse with other students by asking questions and discussing issues raised in such presentations. Because the spoken language of such discussions and presentations is as far from their everyday language as scientific text is from a novel, the development both of written and spoken scientific explanation/argumentation needs to proceed in parallel.

In high school, these practices should be further developed by providing students with more complex texts and a wider range of text materials, such as technical reports or scientific literature on the Internet. Moreover, students need opportunities to read and discuss general media reports with a critical eye and to read appropriate samples of adapted primary literature [40] to begin seeing how science is communicated by science practitioners.

In engineering, students likewise need opportunities to communicate ideas using appropriate combinations of sketches, models, and language. They should also create drawings to test concepts and communicate detailed plans; explain and critique models of various sorts, including scale models and prototypes; and present the results of simulations, not only regarding the planning and development stages but also to make compelling presentations of their ultimate solutions.

The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement