in science, students’ facility with addressing these concepts and related topics at any particular grade level depends on their prior experience and instruction. The research base on learning and teaching the crosscutting concepts is limited. For this reason, the progressions we describe should be treated as hypotheses that require further empirical investigation.

SEVEN CROSSCUTTING CONCEPTS OF THE FRAMEWORK

The committee identified seven crosscutting scientific and engineering concepts:

1. Patterns. Observed patterns of forms and events guide organization and classification, and they prompt questions about relationships and the factors that influence them.

2. Cause and effect: Mechanism and explanation. Events have causes, sometimes simple, sometimes multifaceted. A major activity of science is investigating and explaining causal relationships and the mechanisms by which they are mediated. Such mechanisms can then be tested across given contexts and used to predict and explain events in new contexts.

3. Scale, proportion, and quantity. In considering phenomena, it is critical to recognize what is relevant at different measures of size, time, and energy and to recognize how changes in scale, proportion, or quantity affect a system’s structure or performance.

4. Systems and system models. Defining the system under study—specifying its boundaries and making explicit a model of that system—provides tools for understanding and testing ideas that are applicable throughout science and engineering.

5. Energy and matter: Flows, cycles, and conservation. Tracking fluxes of energy and matter into, out of, and within systems helps one understand the systems’ possibilities and limitations.

6. Structure and function. The way in which an object or living thing is shaped and its substructure determine many of its properties and functions.

7. Stability and change. For natural and built systems alike, conditions of stability and determinants of rates of change or evolution of a system are critical elements of study.

This set of crosscutting concepts begins with two concepts that are fundamental to the nature of science: that observed patterns can be explained and that



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement