BOX 1.1
The Existing NEES Network

The primary focus of NEES is on the research community and practicing engineers who develop the innovations necessary to reduce the impact of seismic disasters. The NEES network infrastructure encompasses management headquarters; 14 earthquake engineering and tsunami research facility sites located at universities across the United States (available for testing on-site, in the field, or remotely); and cyberinfrastructure operations that connect the work of the experimental facilities, researchers, educators, and students.

SOURCE: http://nees.org/.

The committee suggested that the Grand Challenges would define the frontiers in basic earthquake engineering research needed to provide transformative solutions for achieving an earthquake-resilient society. Transformative solutions to the Grand Challenges could be achieved by improved design codes, public policies, innovative systems, design and analysis methods, and sensing and actuation technologies embedded in the built environment. Workshop participants were asked to address the key questions without regard to the current capabilities or limitations of the existing NEES facilities.

Paraphrasing the National Academy of Engineering’s (NAE) Grand Challenges for Engineering, a grand challenge is a large and complex problem that needs to be mastered to ensure the sustainability of civilization and the health of its citizens while reducing individual and societal vulnerabilities (NAE, 2008). A grand challenge will not be met without finding ways to overcome the barriers that block its accomplishment. The NEHRP vision—“A nation that is earthquake resilient in public safety, economic strength, and national security” (NEHRP, 2008)—is a grand challenge by the NAE definition. A fundamental goal of this workshop, therefore, was to describe the earthquake engineering challenges in terms of problems, barriers, and bottlenecks that must be solved to realize the NEHRP vision.

Workshop Organization

The workshop was held on March 14–15, 2011, at the NRC’s Beckman Center in Irvine, California. Workshop participants included 37 researchers and practitioners drawn from a wide range of disciplines to focus on the two key questions in the task statement. In addition, seven observers from NSF and the broader earthquake engineering research community attended the discussions. Altogether, there were 53 workshop attendees, including the committee and NRC staff.

The committee invited six keynote speakers to the workshop to inform discussions about the Grand Challenges and rapid advances in technology. Through their presentations and associated white papers (see Appendix B), which were distributed prior to the workshop, the speakers were tasked with articulating a vision that would help guide workshop discussions. The first three keynote speakers—Laurie Johnson, Laurie Johnson Consulting; Reginald DesRoches, Georgia Institute of Technology; and Gregory Deierlein, Stanford University—presented their ideas for transformative earthquake engineering research in the categories of community, lifelines, and buildings, respectively. Each considered four dimensions: community resilience, pre-event prediction and planning, design of infrastructure, and post-event response and recovery (see Box 1.2). To facilitate discussion on the advances in technology, three additional keynote speakers—James Myers, Rensselaer Polytechnic Institute; John Halloran, University of Michigan; and Omar Ghattas, University of Texas at Austin—presented roadmaps for information technology, materials, and modeling and simulation, respectively. The technology keynote speakers introduced the workshop participants to the transformative possibilities of technology for earthquake engineering beyond 2014.

Additionally, two workshop participants—Ken Elwood, University of British Columbia, and Thomas Heaton, California Institute of Technology—provided their observations on the two recent devastating earthquakes in New Zealand and Japan (see Box 1.3). Gregory Fenves, co-chair of the committee, spoke briefly on behalf of Masayoshi Nakashima, committee member, who was unable to attend the workshop because of the major earthquake in Japan which had occurred just days before the workshop.

Breakout sessions were the primary mechanism for brainstorming, analyzing, and documenting responses to the two key workshop questions. Four breakout sessions were structured along the dimensions described in Box 1.2, and one breakout session organized participants along disciplinary lines: buildings, lifelines, geotechnical/tsunamis, and community resilience. Each breakout session included a moderator, who served as both leader of the breakout session and facilitator of open and organized discussion, and a committee member who served as rapporteur. The moderators—



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement