meaningful learning activities that can be completed through constructive and productive learning. Examples of such learning activities include browsing for information, generating a hypothesis, and distributing tasks.

Slotta has also developed a technology framework called SAIL SmartSpace (S3) to support a complex orchestration of people, materials, resources, groups, conditions, and so on. This framework can be regarded as a “smart classroom” infrastructure that facilitates cooperative learning in a milieu of physical and semantic spaces. From a technical standpoint, S3 supports aggregating, filtering, and representing information on various devices and displays (e.g., handheld devices, laptop computers); locational dependencies (i.e., allowing different things to happen depending on the physical location of a student); interactive learning objects; and an intelligent agent framework. The S3 environment is highly customizable and supports the coordination of people, activities, and materials with real-time sensitivity to inputs from students.

2.9.4 The Need for a Career Framework

Joyce Malyn-Smith contended that for computational thinking to get traction in the K-12 education community, it needs to be connected to frameworks and standards that are already implemented nationwide. An analysis of the Information Technology Career Cluster Initative’s model, for example, provides a way to organize a hierarchy of skills and knowledge that can be repurposed to support the integration of computational thinking in the K-12 arena. At the most basic level, this information technology skills framework calls for literacy and the ability to use common technology applications. Further up the hierarchy is fluency with information technology, which involves core knowledge and skill sets of technology-enabled workers employed in any industry sector. At the highest level of this model are the skill sets necessary for information technology producer or developer careers—those that involve the design, development, support, and management of hardware, software, multimedia, systems integration, and services. In short, individuals engaged in different activities are likely to need different (though overlapping) sets of technology skills.

The National Academies of Sciences, Engineering, and Medicine
500 Fifth St. N.W. | Washington, D.C. 20001

Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement