intention to pursue a career in research and development, similar to those in physics and chemical engineering. Unlike those fields, however, neuroscience and neurobiology students reported a large change in career objectives, with a 13 percent decrease in interest in research and development (see Table 7-18 in the Assessment). It is unclear if this decline reflects student perception of static employment opportunities for biomedical scientists in academia or, perhaps more positively, the opening of a wider array of career options for application of technical expertise in the biomedical sciences. This is an area that merits continued data collection for a more complete understanding of career outcomes in the biomedical science fields.


The percentage of neuroscience and neurobiology students completing programs within 6 years exhibited an interquartile range of 36 percent to 57 percent with a median of 53 percent2. The cohort completion rate did not correlate with measures of faculty research productivity (i.e., publications, citations, and grants), as shown in Appendix D. This was similar to other biomedical science programs.

We can reliably identify the locus of management of only 60 percent of the neuroscience and neurobiology programs. This is further complicated by the interdisciplinary nature of neuroscience and neurobiology, where “behavioral” neuroscience and neurobiology programs are more likely to be administered in an arts and sciences faculty while “anatomical” or “physiological” neuroscience and neurobiology programs are more likely to be in medical schools. Of the programs that we can locate, 57 percent are in medical schools and 43 percent are in arts and sciences.3 For these identifiable programs, the completion rate for programs in medical schools was 43 percent, while it was 48 percent for programs in arts and sciences.

The median time to degree for neuroscience and neurobiology programs ranged from 5 to 7.26 years, with 73 of the 93 programs falling between 5 and 6.5 years. This was similar to the other biomedical science fields with the exception of biomedical engineering and bioengineering, where the median time to degree tended to be lower with a range of 3.4 to 6.5 years.



Like most of the biomedical sciences, the neuroscience and neurobiology programs had relatively large numbers of female students. Eighty-three of the 93 programs reported 30-70 percent female students enrolled. The percent of female faculty ranged widely in neuroscience and neurobiology from 0 to 100 percent, although the interquartile range, which spans 86 of the 93 programs, reported from 21 percent to 30 percent female faculty. No meaningful correlation (r = -0.002) was found between the percent of female faculty and the percent of female students enrolled in neuroscience and neurobiology or other biomedical fields. In neuroscience and


2 Unless otherwise noted, the data in the remainder of this chapter is based on the online Excel data table accompanying this report at

3 These data were collected specifically for this report from the institutions in a separate email survey.

The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement