systems has been significantly advanced by an ability to conduct specific and accurate studies with high spatial and temporal resolution (often referred to as process-scale investigations). Arctic sea ice loss, changes in Earth’s albedo, trace gas emissions from various ocean and land ecosystems, the interplay between changes in atmospheric composition (including stratospheric ozone loss) and atmospheric radiative forcing (i.e., climate change), and changes in severe storms and in atmospheric dynamics are but a few areas of investigation significantly impacted by suborbital capabilities. The suborbital program elements provide essential technical innovation and risk mitigations that benefit spaceflight missions through development and demonstration of technology and instruments that later fly on NASA spacecraft. The suborbital elements provide effective, hands-on, engineering and management experience that transfers readily to NASA spaceflight projects. These frequent opportunities, which provide for cradle-to-grave hands-on mission experiences and training for students, researchers, principal investigators, project managers, and engineers, are vital to future space endeavors.

The committee decided not to include documentation of the evolution of the funding of the suborbital program because changes over time in NASA’s complex accounting procedures make it extremely difficult to obtain meaningful trends. Nonetheless, as currently implemented by NASA, suborbital elements and facilities are insufficiently funded and hence not fully or effectively used. There is inadequate support for payload construction and for the development of key technologies, such as detectors, lightweight optics, and so on. The suborbital elements are dependent on reimbursable funding; inadequate research and analysis funding has led to such a decrease in the number of flights that the program is jeopardized.

The following provides the committee’s integrated recommendations that cut across all suborbital elements. Chapter 8 provides a detailed listing of the overarching findings and recommendations, with additional details provided in Chapters 2 through 7.

Recommendation 1: NASA should undertake the restoration of the suborbital program as a foundation for meeting its mission responsibilities, workforce requirements, instrumentation development needs, and anticipated capability requirements. To do so, NASA should reorder its priorities to increase funding for suborbital programs.

Recommendation 2: NASA should assign a program lead to the staff of the associate administrator for the Science Mission Directorate to coordinate the suborbital program. This lead would be responsible for the development of short- and long-term strategic plans for maintaining, renewing, and extending suborbital facilities and capabilities. Further, the lead would monitor progress toward strategic objectives and advocate for enhanced suborbital activities, workforce development, and integration of suborbital activities within NASA.

Recommendation 3: To increase the number of space scientists, engineers, and system engineers with hands-on training, NASA should use the suborbital program elements as an integral part of on-the-job training and career development for engineers, experimental scientists, systems engineers, and project managers.

Recommendation 4: NASA should make essential investments in stabilizing and advancing the capabilities in each of the suborbital program elements, including the development of ultralong-duration super-pressure balloons with the capability to carry 2 to 3 tons of payload to 130,000 feet, the execution of a thorough conceptual study of a short-duration orbital capability for sounding rockets, and modernization of the core suborbital airborne fleet. (The committee notes that it was not asked to prioritize the different elements of the suborbital program, but such a prioritization should be an integral part of implementing this recommendation.)

Recommendation 5: NASA should continue to monitor commercial suborbital space developments. Given that the commercial developers stated to the committee that they do not need NASA funding to meet their business objectives, this entrepreneurial approach offers the potential for a range of opportunities for low-cost quick access to space that may benefit NASA as well as other federal agencies.

 



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement