images

FIGURE 3.1 The International Space Station as seen by space shuttle Discovery on March 25, 2009, after undocking. SOURCE: Courtesy of NASA.

of the Astronaut Corps must possess a flexible, broad base of skills, including EVA, robotics, payload operations, in-flight maintenance, and potential emergency responses. The ISS is a large, complex orbiting laboratory facility that has many systems and tasks (Figure 3.1).

ISS training also features a sizable international component that deals with spacecraft, modules, and hardware from Russia, Europe, Japan, and Canada. The committee assumes that the international aspect will continue during the era of commercial spaceflight and remain a major facet of beyond-Earth-orbit operations if they occur.

TRAINING AND PROFICIENCY REQUIREMENTS

A distinctive aspect of participating in spaceflight is that each astronaut is expected to arrive in space having already developed the individual skills necessary for real-time decision making in an operational environment. Exercising such skills relies on innate capability to set priorities among a variety of factors, from a keen appreciation of the risks associated with decisions that affect personnel safety to a sound understanding of the design specifications that affect vehicle reliability to the trade-offs that affect operational efficiency. Three prototypical decision-making behaviors provide a reasonable benchmark: skills-based, rules-based, and knowledge-based.1 That benchmark is used in other safety-critical, time-critical domains, such as commercial aviation and the civilian nuclear industry2 (see Appendix A). Likewise and arguably even more prominently, the astronaut training program must prepare astronauts to apply those different behaviors at appropriate times. Training astronauts to a suitable level of proficiency in the decision-making behaviors requires various training methods and facilities.

_________

1 J. Rasmussen, Skills, rules, knowledge; signals, signs, and symbols, and other distinctions in human performance models, IEEE Transactions on Systems, Man, and Cybernetics13:257-266, 1983.

2 Institute of Nuclear Power Operations, Human Performance Reference Manual, Atlanta, Ga., October 2006.



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement