National Academies Press: OpenBook

An Interim Report on NASA's Draft Space Technology Roadmaps (2011)

Chapter: 3 Roadmap Gaps and Structure

« Previous: 2 Observations
Suggested Citation:"3 Roadmap Gaps and Structure." National Research Council. 2011. An Interim Report on NASA's Draft Space Technology Roadmaps. Washington, DC: The National Academies Press. doi: 10.17226/13228.
×

3
Roadmap Gaps and Structure

The steering committee and the panels for this study identified a number of gaps and have made a number of changes to the space technology roadmaps Technology Area Breakdown Structure (TABS). Most of the gaps fall within the scope of a particular roadmap and have been filled by modifying the structure of the TABS (as described below). It is this revised TABS that the steering committee and panels will use when prioritizing the technologies in the roadmaps for the final report.

Some gaps concern multiple roadmaps and cannot be easily filled by adjusting the TABS of a single roadmap. This chapter separately addresses those gaps: commercial space, avionics, and space weather beyond radiation effects. The revised TABS (see Table 3.1 and Appendix C) does not include the changes that would be needed to address these gaps; the purpose of this interim report is to give NASA an early opportunity to initiate the process of revising the draft roadmaps to fill these cross-cutting gaps.

COMMERCIAL SPACE

The content of the draft roadmaps could be improved by giving more consideration to the needs of the commercial space sector. The National Aeronautics and Space Act declares that “the general welfare of the United States requires that the Administration seek and encourage, to the maximum extent possible, the fullest commercial use of space.” In addition, NASA is directed to “encourage and provide for federal government use of commercially provided space services and hardware, consistent with the requirements of the federal government” (Pub. L. No. 111-314, sec. 20102). The National Space Policy affirms the importance of commercial space activities, stating that “a robust and competitive commercial space sector is vital to continued progress in space. The United States is committed to encouraging and facilitating the growth of a U.S. commercial space sector”1 (White House, 2010, p. 3). NASA’s contribution to accomplishing these important objectives would be enhanced by a technology development program that does the following:

•   Identifies how the commercial space sector could benefit from advanced technology.

•   Makes appropriate efforts to develop pre-competitive technology relevant to the needs of the commercial space sector, in much the same way that NASA supports pre-competitive technology development in support of the aeronautics industry.

•   Transfers advanced technologies to U.S. industry to help satisfy the needs of the commercial space sector as well as NASA’s own mission needs.

The dissemination of technical data held by NASA can be limited by various factors, including International Traffic in Arms Regulations (ITAR) and intellectual property rights. Even so, NASA contractors generally have good access to NASA’s technical data. The commercial impact of NASA technology development would be enhanced by more effectively disseminating technology data (past,

_______________________

1 As used in the National Space Policy, the term commercial refers to “space goods, services, or activities provided by private sector enterprises that bear a reasonable portion of the investment risk and responsibility for the activity, operate in accordance with typical market-based incentives for controlling cost and optimizing return on investment, and have the legal capacity to offer these goods or services to existing or potential nongovernmental customers” (White House, 2010, p. 10).

Suggested Citation:"3 Roadmap Gaps and Structure." National Research Council. 2011. An Interim Report on NASA's Draft Space Technology Roadmaps. Washington, DC: The National Academies Press. doi: 10.17226/13228.
×

present, and future) to elements of the commercial space industry that are not under contract to NASA. For example, historical data on the performance of thermal protection systems during atmospheric entry and the effects of zero gravity on human health would be of particular interest to companies seeking to establish launch capabilities to transport crew and cargo to low Earth orbit (LEO), in-space servicing, and related space commerce. NASA is supporting ongoing technology development related to autonomous rendezvous and proximity operations, docking and dexterous mechanisms, and life sciences. These technologies currently appear in the draft roadmaps. (See, for example, technology subareas 4.6, Autonomous Rendezvous and Docking, and 6.3, Human Health and Performance.) Highlighting technologies such as these as being of interest to the commercial space sector could facilitate the technology transfer process. In addition, grouping technologies of particular interest to the commercial space sector in a level 2 “Commercial Space Technologies” subarea could be done to enhance the visibility of NASA’s efforts to meet the needs of commercial space. The steering committee gave some consideration to establishing a separate roadmap dealing with commercial space technologies to highlight this area, but decided against it in preference to suggesting a level 2 subarea to show the relevance of a broad range of technologies across many of the roadmaps and to make them easier to identify.

AVIONICS

Like many other spacecraft systems, avionics are essential to mission success, and they consume scarce resources in terms of launch volume, payload mass, and power. Advanced technology could improve the reliability and performance of avionics in harsh space environments and reduce their volume, mass, and power requirements. However, the draft roadmaps have very few level 3 technologies that would contribute to advances in avionics technology.

Some advances in avionics technology will progress even without NASA investment. These likely include commercial development of new data bus technologies, which are broadly applicable, and fundamentally new means of data processing to support a wide range of processor applications. However, it is appropriate for NASA to support the development of avionics technologies that are uniquely driven by NASA mission requirements. These technologies would contribute to the following capabilities:

•   High computation rates and high data throughput for avionics components that are intrinsically radiation hard.

•   Fault-tolerant processing. Processor faults can lead to mission failure. Technology advancements in fault tolerant processing would improve future vehicle safety and mission reliability.

•   Fully coordinated, reliable, and successful operation of complex, highly integrated avionics systems. The complexity of avionics systems for some future space vehicles will press the state of the art.

SPACE WEATHER BEYOND RADIATION EFFECTS

Space weather refers to the dynamic state of the space environment. It includes space radiation as well as other phenomena, such as solar electromagnetic flux, magnetic fields, charged and neutral components of the solar wind, and energetic particles superimposed on the solar wind from solar and galactic sources. The space environment extends from the Sun throughout the solar system, and it includes the magnetospheres and ionospheres of planets and moons. The space environment changes over time scales ranging from seconds to millennia, but the most common time scales of interest to NASA mission operations range from minutes to hours or days. For mission planning and design the relevant time scales range from days to years or decades.

Space weather affects NASA operations far beyond the effects of penetrating radiation on human health, as addressed in TA06, Human Health, Life Support, and Habitation Systems (see technology 6.5.4, which has been retitled Radiation Prediction). The technology roadmaps as a whole do not

Suggested Citation:"3 Roadmap Gaps and Structure." National Research Council. 2011. An Interim Report on NASA's Draft Space Technology Roadmaps. Washington, DC: The National Academies Press. doi: 10.17226/13228.
×

adequately address the broader impacts of space weather caused by these phenomena. Examples of the impacts, along with representative technological solutions, include:

  • Spacecraft charging and discharging from plasma effects

— Miniature devices that detect and mitigate plasma discharge

  • Single event effects (SEEs) in electronics

— Components or systems that are SEE resistant or fault tolerant

— Improved testing systems to qualify components

  • Thermal and material degradation from exposure to ultraviolet radiation and atomic oxygen

— Composite and/or multilayer materials that are resistant to erosion

  • Communications and navigation disruption from x-rays and geomagnetic storms

— Improved sensor systems and models to forecast severe storms

  • Enhanced orbital drag from atmospheric heating

— Improved long-term solar activity forecasts

Advanced technologies are needed to improve space situation awareness, to provide dynamic models of the space environment, and to develop innovative approaches for mitigating the varied effects of space weather and to resolve operational failures and anomalies. These technologies could have broad national impacts, as discussed in a recent NRC report, Severe Space Weather Events—Understanding Societal and Economic Impacts: A Workshop Report (NRC, 2008). Space weather can disrupt or degrade commercial satellite systems, ground-based ultra-high-frequency communication systems, and Global Positioning System-derived precision navigation and timing, and, in extreme cases, it can lead to widespread power outages as occurred in Montreal, Canada, in 1989.

Currently, space weather and the space environment beyond radiation seem to be touched upon in just one of the draft roadmaps: TA08, Science Instruments, Observatories, and Sensor Systems (see technology 8.3.1, which comprises sensors for particles, fields, and waves, including charged and neutral particles, magnetic fields, and electric fields). A much broader effort would be needed to cover the full scope of space weather effects and to implement an integrated approach to technology development to reduce the varied effects of space weather beyond radiation on NASA missions in Earth orbit and throughout the solar system. A comprehensive program would include space weather monitoring, modeling, prediction, and mitigation for both radiation and other elements of space weather. Such a program could be implemented either by adding relevant level 2 and level 3 technologies to appropriate roadmaps or by implementing a dedicated space weather roadmap.

REVISED TECHNOLOGY AREA BREAKDOWN STRUCTURE2

The TABS has three levels, as follows:

Level 1: Technology area, for example, TA01 Launch Propulsion Systems;

Level 2: Technology subarea, for example, 1.1 Solid Rocket Propulsion Systems; and

Level 3: Technology, for example, 1.1.1 Propellants.

The draft TABS generated by NASA (revision 10) appears in the left column of Table 3.1, at the end of this chapter. During the course of their deliberations, the steering committee and the panels modified the TABS for some of the technology areas, primarily for the purpose of filling technology gaps within a particular roadmap. The revised TABS forms the basis of the committee’s evaluation and prioritization, which will be reported against that structure in the final report. The TABS for most of the

_______________________

2 The sections that follow do not address technology areas with TABS that the steering committee and panels did not change: TA01, TA10, TA12, TA13, and TA14.

Suggested Citation:"3 Roadmap Gaps and Structure." National Research Council. 2011. An Interim Report on NASA's Draft Space Technology Roadmaps. Washington, DC: The National Academies Press. doi: 10.17226/13228.
×

roadmaps has been revised to make just a few changes or none at all. However, for TA04 Robotics, TeleRobotics, and Autonomous Systems, the steering committee has made broad changes in the level 3 technologies. All of the changes are explained in the text below, which are listed in the right column of Table 3.1 and in Appendix C. The steering committee and panels made no changes to the level 3 technologies in the roadmaps for TA01, TA10, TA12, TA13, and TA14. However, as noted in Table 3.1, some changes to the TABS for TA10 and TA14 are needed so that the TABS matches the list of level 3 technologies listed in the roadmaps for those areas.

Changes to the TABS for TA02 In-Space Propulsion Technologies

The steering committee deleted the following technologies: 2.4.1 Engine Health Monitoring and Safety, 2.4.3 Materials and Manufacturing Technologies, 2.4.4 Heat Rejection, and 2.4.5 Power. None of these technologies fall under the scope of TA02, and roadmap TA02 does not suggest that any of them should be developed as part of TA02. Except for item 2.4.2, this section of the roadmap is used to highlight level 1 or level 2 topics in other roadmaps that are important to the TA02 roadmap but that belong to other roadmaps. For example, with regard to 2.4.5 Power, the roadmap says:

Power systems play an integral role in all in-space propulsion systems for both human and robotic missions. The reader is referred to the Technology Area 3, Space Power and Energy Storage Systems.

Similarly, with regard to technologies 2.4.1, 2.4.3, and 2.4.4, roadmap TA02 refers readers to roadmaps TA04, TA12, and TA14, respectively, to learn the details of what should be done in these areas.

Changes to the TABS for TA03 Space Power and Energy Storage

Energy storage can be accomplished using many fundamentally different approaches. The current roadmap includes three: batteries, flywheels, and regenerative fuel cells. Two other approaches may also prove feasible for space applications: electric and magnetic field storage and thermal storage (especially for surface power applications). Accordingly, the structure for this roadmap has been modified by adding two new level 3 technologies:

•   3.2.4 Electric and Magnetic Field Storage

•   3.2.5 Thermal Storage

Changes to the TABS for TA04 Robotics, TeleRobotics, and Autonomous Systems

In order for the TA04 Robotics, TeleRobotics, and Autonomous Systems roadmap to describe and provide supporting text for each of the level 3 technologies (like the other roadmaps), it would have to be largely rewritten. In addition, the committee concluded that for this roadmap to be parallel with the other 13 roadmaps it needs to do the following:

•   Define a clear technology breakdown structure of the TA04 roadmap to level 3 that identifies technologies for development consideration without predetermination of technical solutions.

•   Provide supporting roadmap text for each of the level 3 technologies that includes an explanation of each technology’s potential application(s), and that motivates its development.

•   Ensure that each of the included level 3 technologies connect to one or more of the top challenges that are also identified within the applicable roadmap document.

Suggested Citation:"3 Roadmap Gaps and Structure." National Research Council. 2011. An Interim Report on NASA's Draft Space Technology Roadmaps. Washington, DC: The National Academies Press. doi: 10.17226/13228.
×

Although Figure 2 in the existing roadmap for TA04 includes a version of a technology breakdown structure to level 3, the document did not meet the criteria above for the following reasons:

•   The breakdown structure in the existing TA04 roadmap (Figure 2) does not correlate to any of the document’s supporting text below level 2.

•   The level 3 categories included in the existing TA04 roadmap often identify candidate technical solutions rather than technology development categories.

As a result, the steering committee and responsible panel did not have a list of well-defined level 3 technologies to present for public comment, and the list of level 3 technologies in the roadmap was not well suited to prioritization of potential technology developments.

Because the TA04 roadmap did not include a viable list of level 3 technologies, public comments for the TA04 roadmap were solicited using the level 2 technology subareas in the existing TA04 roadmap rather than at level 3 as was done for all the other roadmaps. In parallel, a new set of level 3 technologies was developed for each of the level 2 technology subareas. This new set of level 3 technologies is consistent both with the relevant panel’s understanding of applicable TA04 technology needs and with the intent of much of the existing roadmap text. Some new level 3 technologies address important technology gaps within the existing TA04 roadmap:

•   4.1.6 Multi-Sensor Data Fusion. Since effective robotics operation often requires the integrated use of data collected simultaneously from a variety of sensors, the fusion of that data into more useful information is a critical capability. The original TA04 TABS included the narrower topic of Sensor Fusion for Grasping (4.5.3), which this technology treats more broadly.

•   4.1.7 Mobile Feature Tracking and Discrimination. This area covers the unique challenges to object tracking and discrimination faced by a surface mobility vehicle while in motion.

•   4.2.1 Extreme Terrain Mobility. Extreme terrain includes cliffs, crater walls, and very rugged surfaces. Means of mobility to safely reach and loiter at designated locations on such terrain poses unique challenges.

•   4.2.2 Below Surface Mobility. Vehicles that would transit under regolith, in caves, or immersed in bodies of liquid have mobility challenges not covered in other level 3 technology entries in this roadmap.

•   4.3.3 Modeling of Contact Dynamics. Robotic vehicles that dock or that manipulate objects require detailed models of the contact dynamics to enable proper control of their interactions.

•   4.3.4 Mobile Manipulation. Performing any kind of manipulation with a surface vehicle while it is mobile adds complexity to the operation that will require dedicated technology to overcome.

•   4.4.4 Intent Recognition and Reaction. More effective robotic aiding of humans will require means for the robots to reliably recognize human intent through speech, gesture, or facial expression to enable appropriate responses.

•   4.4.7 Safety, Trust, and Interfacing of Robotic/Human Proximity Operations. Human reliance on proximate robots for critical support capabilities will necessitate a high level of confidence that the robot will respond usefully, safely, and predictably. This capability necessitates means for integrated interaction assessment and associated verification and validation. The original TA04 TABS included the topic of Human Safety (4.7.1), which has been broadened.

•   4.5.3 Autonomous Guidance and Control. This capability requires the means to adjoin effective decision making algorithms regarding appropriate and efficient vehicle trajectory, path, and orientation management with suitably robust guidance and control implementations.

•   4.5.5 Adjustable Autonomy. There are many levels of autonomy that can be designed into systems. An important capability would provide means to adapt the level of applied autonomy to the

Suggested Citation:"3 Roadmap Gaps and Structure." National Research Council. 2011. An Interim Report on NASA's Draft Space Technology Roadmaps. Washington, DC: The National Academies Press. doi: 10.17226/13228.
×

mission circumstances, either automatically or by providing a means for timely human command. The original TA04 TABS included the topic of Semi Automatic Systems (4.5.12), which has been broadened.

The other new level 3 technologies reorder, restate, or regroup the entries from the original TABS. If NASA accepts the recommended restructuring of this roadmap, it may be prudent for the NASA roadmapping team to reconvene to revise the roadmap to include these new technologies and to provide descriptions of all of the TA04 level 3 technologies. In any case, the steering committee’s final report will include more detailed information on the TA04 technologies that are determined to be high priority.

Changes to the TABS forTA05 Communication and Navigation

Technologies 5.4.1 Timekeeping and 5.4.2 Time Distribution have been merged and renamed 5.4.1 Timekeeping and Time Distribution because the technologies are very similar and it would be most effective to develop them together.

Technology 5.6.7 Reconfigurable Large Apertures has been renamed Reconfigurable Large Apertures Using Nanosat Constellations to better indicate the content of this technology as described in the TA05 roadmap.

Changes to the TABS for TA06 Human Health, Life Support, and Habitation Systems

Technology 6.5.4 Space Weather Prediction has been renamed Radiation Prediction. As described in the roadmap, this technology is focused on monitoring, modeling, and predicting ionizing radiation (from solar particle events and galactic cosmic rays). This radiation is a subset of Space Weather, which includes many other phenomena. The new name better describes the limited scope of this technology. (Space weather other than radiation is a gap that is discussed above in this chapter.)

Changes to the TABS for TA07 Human Exploration Destination Systems

Several technologies have been renamed, deleted, or moved.

In technology subarea 7.1, In Situ Resource Utilization, technology 7.1.3, Consumables Production, has been renamed ISRU Products/Production because ISRU products are expected to consist of more than just consumables.

Technology 7.2.1, Logistics Systems, has been renamed Autonomous Logistics Management to more fully include all elements of inventory and stowage control and to encourage development of technologies needed for autonomous capabilities that would ideally begin at the inception of a project and include all supporting vendors and suppliers.

In the draft roadmap, Food Production, Processing and Preservation is just one element of technology 7.2.1. Given the importance and complexity of this topic, Food Production, Processing and Preservation has been established as a new level 3 technology (7.2.4).

In the draft roadmap, technology 7.4.1, Integrated Habitat Systems, includes several elements, including Smart Habitats. The technologies associated with smart habitats are ubiquitous across all human space vehicles, and so Smart Habitats has been established as a new level 3 technology (7.4.3).

7.5.2, Environmental Protection, has been deleted because all elements of this technology are being treated in other roadmaps (e.g., radiation protection and thermal protection) or they are adequately handled by currently available technologies and design processes (e.g., protection against electromagnetic interference and ultraviolet radiation).

Suggested Citation:"3 Roadmap Gaps and Structure." National Research Council. 2011. An Interim Report on NASA's Draft Space Technology Roadmaps. Washington, DC: The National Academies Press. doi: 10.17226/13228.
×

7.5.3, Remote Mission Operations, has been deleted because relevant technologies are more appropriately included in the roadmap for TA11 Modeling, Simulation, Information Technology & Processing.

7.5.4, Planetary Safety, has been deleted. The content of this technology, as described in the draft roadmap, focuses on planetary protection involving robotic missions (that is, ensuring that robotic missions do not contaminate planetary destinations with biological agents from Earth, and ensuring that robotic sample return missions do not contaminate Earth with alien biological agents). Likewise, planetary protection policies are limited to robotic missions. Until those policies are updated to provide guidance on human exploration, which will require changes to international agreements coordinated through the United Nations, it would be premature to invest in new technology relevant to planetary safety in TA07 because the focus of this roadmap is human exploration.

7.5.5, Integrated Flight Operations Systems, has been added to support the development of capabilities to provide real-time support for spaceflight operations between a crewed vehicle and a mission control center with reduced ground-based staffing coupled with communications latency and/or extended loss of signal periods. The focus of this technology would be operational data management and related technologies to improve integrated vehicle-ground decision making to ensure mission success and safety of flight for missions beyond LEO. This technology represents an intersection between flight software development; Earth-based command and control‚ models‚ and crew training; and simulation‚ as applied to crewed vehicles and ground control systems.

7.5.6, Integrated Risk Assessment Tools, has been added to support development of new software tools for assessing integrated safety risks for varying exploration scenarios. These tools would improve the ability to assess the risk of various exploration and vehicle development strategies (for example, in terms of destinations, habitat deployment strategies, and the role of ISRU).

7.6.1, Modeling, Simulations and Destination Characterization, has been deleted because relevant technologies are more appropriately included in the roadmap for TA11, Modeling, Simulation, Information Technology and Processing.

Changes to the TABS for TA08 Science Instruments, Observatories, and Sensor Systems

Several technologies have been added or revised, as detailed below.

8.1.3 Optical Components was merged with 8.2.1. Mirror Systems and renamed 8.1.3 Optical Systems because the technologies are very similar and it would be most effective to develop these technologies together.

8.1.7 Space Atomic Interferometry has been added to fill a gap in the roadmap. Atomic interference of laser-cooled atoms has enabled fundamental physics laboratory experiments (at TRL 4), including gravitational measurements with greatly improved precision. Advances in this technology could lead to extremely sensitive space detectors for acceleration and, thus, gravity waves.

8.2.4 High Contrast Imaging and Spectroscopy Technologies has been added to fill a gap. Development of advanced approaches to high-dynamic-range imaging would be a game-changing technology that is essential to support exoplanet imaging, which is a priority initiative in the Astro2010 decadal survey for astronomy and astrophysics (NRC, 2010). This technology would provide unprecedented sensitivity, field of view, and spectroscopy of exoplanetary systems, with many subsidiary applications such as solar physics and the study of faint structures around bright objects (such as jets, halos, and winds).

8.2.5 Wireless Spacecraft Technologies has been added to fill a gap in the roadmap. The use of wireless systems in spacecraft avionics and instrumentation will usher in a new and game-changing methodology in the way spacecraft and space missions will be designed and implemented. Wireless avionics could provide numerous improvements over hard-wired architectures, such as inherent cross-strapping, an architecture that is extensible and reliable; reduction in cable mass; and a significant reduction in the cost and time of system integration and test.

Suggested Citation:"3 Roadmap Gaps and Structure." National Research Council. 2011. An Interim Report on NASA's Draft Space Technology Roadmaps. Washington, DC: The National Academies Press. doi: 10.17226/13228.
×

Two technologies in the roadmaps (8.3.1 Particles: Charged and Neutral and 8.3.2 Fields and Waves) seem to have so much overlap that they have been combined to form one entry. The title of the new technology is 8.3.1 Particles, Fields, and Waves: Charged and Neutral Particles, Magnetic and Electric Fields.

Changes to the TABS for TA09 Entry, Descent, and Landing Systems

Technology 9.1.5 Instrumentation and Health Monitoring is applicable to descent and landing as well as entry, and so it has been moved to technology subarea 9.4, Vehicle Systems Technology, which encompasses technologies that cover multiple phases of EDL. It has been redesignated 9.4.6.

Modeling and Simulation appears as separate line items in Entry (9.1.6), Descent (9.2.5), and Landing (9.3.6). However, there is so much overlap among these three areas, and the factors that determine priority vary so little from one to another, that they have been combined into a new level three technology (9.4.5 EDL Modeling and Simulation) in technology subarea 9.4, Vehicle Systems Technology.

GN&C sensors (9.2.4) are applicable to entry and landing as well as descent. In addition, there are entry and descent aspects to large-body GN&C (9.3.4). Therefore, these items have been combined into a new level 3 technology (9.4.7 GN&C Sensors and Systems) in technology subarea 9.4, Vehicle Systems Technology.

9.4.1 Architecture Analyses appears in the TABS and in two summary figures in the TA09 roadmap, but it does not appear in the roadmap table of contents or in the text in the main body of the roadmap. It has been deleted.

9.4.3 in the TABS is titled Systems Integration and Analyses. In some places in the roadmap it is titled Vehicle Technology. Systems Integration and Analyses more accurately describes the content of this technology.

Changes to the TABS for TA11 Modeling, Simulation, Information Technology, and Processing

Technology 11.2.4, Science and Engineering Modeling (which is actually titled Science and Aerospace Engineering Modeling in the text of the TA11 roadmap), was considered to be too broad. It has been split in two:

•   11.2.4a Science Modeling and Simulation and

•   11.2.4b Aerospace Engineering Modeling and Simulation.

The content of these two technologies is as described in the TA11 roadmap under section 11.2.4 Science and Aerospace Engineering Modeling, in the subsections titled Science Modeling and Aerospace Engineering, respectively.

Suggested Citation:"3 Roadmap Gaps and Structure." National Research Council. 2011. An Interim Report on NASA's Draft Space Technology Roadmaps. Washington, DC: The National Academies Press. doi: 10.17226/13228.
×

TABLE 3.1 Roadmap Technology Area Breakdown Structure, NASA Draft (left column) and Steering Committee Changes (right column).

Draft TABS by NASA, Revision 10 Changes
   
TA01 Launch Propulsion Systems The structure of this roadmap remains unchanged.
   

1.1    Solid Rocket Propulsion Systems

 

1.1.1    Propellants

 

1.1.2    Case Materials

 

1.1.3    Nozzle Systems

 

1.1.4    Hybrid Rocket Propulsion Systems

 

1.1.5    Fundamental Solid Propulsion Technologies

 

1.2    Liquid Rocket Propulsion Systems

 

1.2.1    LH2/LOX Based

 

1.2.2    RP/LOX Based

 

1.2.3    CH4/LOX Based

 

1.2.4    Detonation Wave Engines (Closed Cycle)

 

1.2.5    Propellants

 

1.2.6    Fundamental Liquid Propulsion Technologies

 

1.3    Air Breathing Propulsion Systems

 

1.3.1    TBCC

 

1.3.2    RBCC

 

1.3.3    Detonation Wave Engines (Open Cycle)

 

1.3.4    Turbine Based Jet Engines (Flyback Boosters)

 

1.3.5    Ramjet/Scramjet Engines (Accelerators)

 

1.3.6    Deeply-cooled Air Cycles

 

1.3.7    Air Collection and Enrichment System

 

1.3.8    Fundamental Air Breathing Propulsion Technologies

 

1.4    Ancillary Propulsion Systems

 

1.4.1    Auxiliary Control Systems

 

1.4.2    Main Propulsion Systems (Excluding Engines)

 

1.4.3    Launch Abort Systems

 

1.4.4    Thrust Vector Control Systems

 

1.4.5    Health Management and Sensors

 

1.4.6    Pyro and Separation Systems

 

1.4.7    Fundamental Ancillary Propulsion Technologies

 

1.5    Unconventional / Other Propulsion Systems

 

1.5.1    Ground Launch Assist

 

1.5.2    Air Launch / Drop Systems

 

1.5.3    Space Tether Assist

 

1.5.4    Beamed Energy / Energy Addition

 

1.5.5    Nuclear

 

1.5.6    High Energy Density Materials/Propellants

 
   
TA02 In-Space Propulsion Technologies Four technologies have been deleted.
   

2.1    Chemical Propulsion

 

2.1.1    Liquid Storable

 

2.1.2    Liquid Cryogenic

 
Suggested Citation:"3 Roadmap Gaps and Structure." National Research Council. 2011. An Interim Report on NASA's Draft Space Technology Roadmaps. Washington, DC: The National Academies Press. doi: 10.17226/13228.
×
Draft TABS by NASA, Revision 10 Changes

2.1.3    Gels

 

2.1.4    Solid

 

2.1.5    Hybrid

 

2.1.6    Cold Gas/Warm Gas

 

2.1.7    Micro-propulsion

 

2.2    Non-Chemical Propulsion

 

2.2.1    Electric Propulsion

 

2.2.2    Solar Sail Propulsion

 

2.2.3    Thermal Propulsion

 

2.2.4    Tether Propulsion

 

2.3    Advanced (TRL <3) Propulsion Technologies

 

2.3.1    Beamed Energy Propulsion

 

2.3.2    Electric Sail Propulsion

 

2.3.3    Fusion Propulsion

 

2.3.4    High Energy Density Materials

 

2.3.5    Antimatter Propulsion

 

2.3.6    Advanced Fission

 

2.3.7    Breakthrough Propulsion

 

2.4    Supporting Technologies

 

2.4.1    Engine Health Monitoring and Safety

Delete: 2.4.1 Engine Health Monitoring and Safety

2.4.2    Propellant Storage and Transfer

 

2.4.3    Materials and Manufacturing Technologies

Delete: 2.4.3 Materials and Manufacturing Technologies

2.4.4    Heat Rejection

Delete: 2.4.4 Heat Rejection

2.4.5    Power

Delete: 2.4.5 Power
   
TA03 Space Power and Energy Storage Two technologies have been added.
   

3.1    Power Generation

 

3.1.1    Energy Harvesting

 

3.1.2    Chemical (Fuel Cells, Heat Engines)

 

3.1.3    Solar (Photo-Voltaic and Thermal)

 

3.1.4    Radioisotope

 

3.1.5    Fission

 

3.1.6    Fusion

 

3.2    Energy Storage

 

3.2.1    Batteries

 

3.2.2    Flywheels

 

3.2.3    Regenerative Fuel Cells

 
  Add: 3.2.4 Electric and Magnetic Field Storage
  Add: 3.2.5 Thermal Storage

3.3    Power Management and Distribution

 

3.3.1    Fault Detection, Isolation, and Recovery (FDIR)

 

3.3.2    Management and Control

 

3.3.3    Distribution and Transmission

 

3.3.4    Wireless Power Transmission

 

3.3.5    [Power] Conversion and Regulation

 

3.4    Cross-Cutting Technology

 

3.4.1    Analytical Tools

 

3.4.2    Green Energy Impact

 

3.4.3    Multi-functional Structures

 

3.4.4    Alternative Fuels

 
Suggested Citation:"3 Roadmap Gaps and Structure." National Research Council. 2011. An Interim Report on NASA's Draft Space Technology Roadmaps. Washington, DC: The National Academies Press. doi: 10.17226/13228.
×
Draft TABS by NASA, Revision 10 Changes
TA04 Robotics, TeleRobotics, and Autonomous (RTA) Systems The technologies have been largely rewritten.
   

4.1    Sensing and Perception

4.1    Sensing and Perception

4.1.1    Stereo Vision

4.1.1    Vision

4.1.2    LIDAR

4.1.2    Tactile Sensing

4.1.3    Proximity Sensing

4.1.3    Natural Feature Image Recognition

4.1.4    Sensing Non-Geometric Terrain Properties

4.1.4    Localization and Mapping

4.1.5    Estimating Terrain Mechanical Properties

4.1.5    Pose Estimation

4.1.6    Tactile Sensing Arrays

4.1.6    Multi-Sensor Data Fusion

4.1.7    Gravity Sensors and Celestial Nav.

4.1.7    Mobile Feature Tracking and Discrimination

4.1.8    Terrain Relative Navigation

4.1.8    Terrain Classification and Characterization

4.1.9    Real-time Self-calibrating of Hand-eye Systems

 

4.2    Mobility

4.2    Mobility

4.2.1    Simultaneous Localiz. and Mapping

4.2.1    Extreme Terrain Mobility

4.2.2    Hazard Detection Algorithms

4.2.2    Below-Surface Mobility

4.2.3    Active Illumination

4.2.3    Above-Surface Mobility

4.2.4    3-D Path Planning w/Uncertainty

4.2.4    Small Body/Microgravity Mobility

4.2.5    Long-life Extr. Enviro. Mechanisms

 

4.2.6    Robotic Jet Backpacks

 

4.2.7    Smart Tethers

 

4.2.8    Robot Swarms

 

4.2.9    Walking in Micro-g

 

4.3    Manipulation

4.3    Manipulation

4.3.1    Motion Planning Alg., High DOF

4.3.1    Robot Arms

4.3.2    Sensing and Control

4.3.2    Dexterous Manipulators

4.3.3    Robot Arms (light, high strength)

4.3.3    Modeling of Contact Dynamics

4.3.4    Dexterous Manipul., Robot Hands

4.3.4    Mobile Manipulation

4.3.5    Sensor Fusion for Grasping

4.3.5    Collaborative Manipulation

4.3.6    Grasp Planning Algorithms Robotic Drilling Mechanisms

4.3.6    Robotic Drilling and Sample Processing

4.3.7    Multi-arm / Finger Manipulation

 

4.3.8    Planning with Uncertainty

 

4.4    Human-Systems Integration

4.4    Human-Systems Integration

4.4.1    Crew Decision Support Systems

4.4.1    Multi-Modal Human-Systems Interaction

4.4.2    Immersive Visualization

4.4.2    Supervisory Control

4.4.3    Distributed Collaboration

4.4.3    Robot-to-Suit Interfaces

4.4.4    Multi Agent Coordination

4.4.4    Intent Recognition and Reaction

4.4.5    Haptic Displays

4.4.5    Distributed Collaboration

4.4.6    Displaying Range Data to Humans

4.4.6    Common Human-Systems Interfaces

 

4.4.7    Safety, Trust, and Interfacing of Robotic/Human Proximity Operations

4.5    Autonomy

4.5    Autonomy

4.5.1    Spacecraft Control Systems

4.5.1    Vehicle System Management and FDIR

4.5.2    Vehicle Health, Prog/Diag Systems

4.5.2    Dynamic Planning and Sequencing Tools

4.5.3    Human Life Support Systems

4.5.3    Autonomous Guidance and Control

4.5.4    Planning/Scheduling Resources

4.5.4    Multi-Agent Coordination

4.5.5    Operations

4.5.5    Adjustable Autonomy

4.5.6    Integrated Systems Health Management

4.5.6    Terrain Relative Navigation

4.5.7    FDIR and Diagnosis

4.5.7    Path and Motion Planning with Uncertainty

4.5.8    System Monitoring and Prognosis

4.5.9    V&V of Complex Adaptive Systems

 
Suggested Citation:"3 Roadmap Gaps and Structure." National Research Council. 2011. An Interim Report on NASA's Draft Space Technology Roadmaps. Washington, DC: The National Academies Press. doi: 10.17226/13228.
×
Draft TABS by NASA, Revision 10 Changes

4.5.10  Automated Software Generation

 

4.5.11  Software Reliability

 

4.5.12  Semi Automatic Systems

 

4.6    Auton. Rendezvous and Docking

4.6    Autonomous Rendezvous and Docking

4.6.1    Rendezvous and Capture

4.6.1    Relative Navigation Sensors (long, mid, and near range)

4.6.2    Low impact and Androgenous Docking Systems and Interfaces

4.6.2    Relative Guidance Algorithms

4.6.3    Relative Navigation Sensors

4.6.3    Docking and Capture Mechanisms/Interfaces

4.6.4    Robust AR&D GN&C Algorithms and FSW

4.6.5    Onboard Mission Manager

 

4.6.6    AR&D Integration and Standardization

 

4.7    RTA Systems Engineering

4.7    RTA Systems Engineering

4.7.1    Human safety

4.7.1    Modularity / Commonality

4.7.2    Refueling Interfaces and Assoc. Tools

4.7.2    Verification and Validation of Complex Adaptive Systems

4.7.3    Modular / Serviceable Interfaces

4.7.4    High Perf., Low Power Onboard Computers

4.7.3    Onboard Computing

4.7.5    Environment Tolerance

 

4.7.6    Thermal Control

 

4.7.7    Robot-to-Suit Interfaces

 

4.7.8    Common Human-Robot Interfaces

 

4.7.9    Crew Self Sufficiency

 
   
TA05 Communication and Navigation Two technologies have been merged and one has been renamed.

5.1    Optical Comm. and Navigation

 

5.1.1    Detector Development

 

5.1.2    Large Apertures

 

5.1.3    Lasers

 

5.1.4    Acquisition and Tracking

 

5.1.5    Atmospheric Mitigation

 

5.2    Radio Frequency Communications

 

5.2.1    Spectrum Efficient Technologies

 

5.2.2    Power Efficient Technologies

 

5.2.3    Propagation

 

5.2.4    Flight and Ground Systems

 

5.2.5    Earth Launch and Reentry Comm.

 

5.2.6    Antennas

 

5.3    Internetworking

 

5.3.1    Disruptive Tolerant Networking

 

5.3.2    Adaptive Network Topology

 

5.3.3    Information Assurance

 

5.3.4    Integrated Network Management

 

5.4    Position, Navigation, and Timing

 

5.4.1    Timekeeping

Merge 5.4.1 and 5.4.2:

5.4.2    Time Distribution

Rename: 5.4.1 Timekeeping and Time Distribution

5.4.3    Onboard Auto Navigation and Maneuver

Delete: 5.4.2 Time Distribution

5.4.4    Sensors and Vision Processing Systems

 

5.4.5    Relative and Proximity Navigation

 

5.4.6    Auto Precision Formation Flying

 

5.4.7    Auto Approach and Landing

 

5.5    Integrated Technologies

 

5.5.1    Radio Systems

 
Suggested Citation:"3 Roadmap Gaps and Structure." National Research Council. 2011. An Interim Report on NASA's Draft Space Technology Roadmaps. Washington, DC: The National Academies Press. doi: 10.17226/13228.
×
Draft TABS by NASA, Revision 10 Changes

5.5.2    Ultra Wideband

 

5.5.3    Cognitive Networks

 

5.5.4    Science from the Comm. System

 

5.5.5    Hybrid Optical Comm. and Nav. Sensors

 

5.5.6    RF/Optical Hybrid Technology

 

5.6    Revolutionary Concepts

 

5.6.1    X-Ray Navigation

 

5.6.2    X-Ray Communications

 

5.6.3    Neutrino-Based Navigation and Tracking

 

5.6.4    Quantum Key Distribution

 

5.6.5    Quantum Communications

 

5.6.6    SQIF Microwave Amplifier

 

5.6.7    Reconfigurable Large Apertures

Rename: 5.6.7 Reconfigurable Large Apertures Using Nanosat Constellations

   
TA06 Human Health, Life Support, and Habitation Systems One technology has been renamed.
   

6.1    Environmental Control, Life Support Systems, and Habitation Systems

 

6.1.1    Air Revitalization

 

6.1.2    Water Recovery and Management

 

6.1.3    Waste Management

 

6.1.4    Habitation

 

6.2    Extravehicular Activity Systems

 

6.2.1    Pressure Garment

 

6.2.2    Portable Life Support System

 

6.2.3    Power, Avionics and Software

 

6.3    Human Health and Performance

 

6.3.1    Medical Diagnosis / Prognosis

 

6.3.2    Long-Duration Health

 

6.3.3    Behavioral Health and Performance

 

6.3.4    Human Factors and Performance

 

6.4    Environmental Monitoring, Safety, and Emergency Response

 

6.4.1    Sensors: Air, Water, Microbial, etc.

 

6.4.2    Fire: Detection, Suppression

 

6.4.3    Protective Clothing / Breathing

 

6.4.4    Remediation

 

6.5    Radiation

 

6.5.1    Risk Assessment Modeling

 

6.5.2    Radiation Mitigation

 

6.5.3    Protection Systems

 

6.5.4    Space Weather Prediction

Rename: 6.5.4 Radiation Prediction

6.5.5    Monitoring Technology

 
   
TA07 Human Exploration Destination Systems Several technologies have been renamed, deleted, or added.

7.1    In Situ Resource Utilization

 

7.1.1    Destination Reconnaissance, Prospecting, and Mapping

 

7.1.2    Resource Acquisition

 

7.1.3    Consumables Production

Rename: 7.1.3 ISRU Products/Production

7.1.4    Manufacturing and Infrastructure

 
Suggested Citation:"3 Roadmap Gaps and Structure." National Research Council. 2011. An Interim Report on NASA's Draft Space Technology Roadmaps. Washington, DC: The National Academies Press. doi: 10.17226/13228.
×
Draft TABS by NASA, Revision 10 Changes

            Emplacement

 

7.2    Sustainability and Supportability

 

7.2.1    Logistics Systems

Rename: 7.2.1 Autonomous Logistics Management

7.2.2    Maintenance Systems

 

7.2.3    Repair Systems

 
  Add: 7.2.4 Food Production, Processing and Preservation (formerly a level 4 item under 7.2.1)

7.3    Advanced Human Mobility Systems

 

7.3.1    EVA Mobility

 

7.3.2    Surface Mobility

 

7.3.3    Off-Surface Mobility

 

7.4    Advanced Habitat Systems

 

7.4.1    Integrated Habitat Systems

 

7.4.2    Habitat Evolution

 
  Add: 7.4.3 Smart Habitats (formerly a level 4 item under 7.4.1)

7.5    Mission Operations and Safety

 

7.5.1    Crew Training

 

7.5.2    Environmental Protection

Delete: 7.5.2 Environmental Protection

7.5.3    Remote Mission Operations

Delete: 7.5.3 Remote Mission Operations

7.5.4    Planetary Safety

Delete: 7.5.4 Planetary Safety
  Add: 7.5.5 Integrated Flight Operations Systems
  Add: 7.5.6 Integrated Risk Assessment Tools

7.6    Cross-Cutting Systems

 

7.6.1    Modeling, Simulations, and Destination Characterization

Delete: 7.6.1 Modeling, Simulations, and Destination Characterization

7.6.2    Construction and Assembly

 

7.6.3    Dust Prevention and Mitigation

 
   
   
TA08 Science Instruments, Observatories, and Sensor Systems Several technologies have been added or merged.
   

8.1    Remote Sensing Instruments / Sensors

 

8.1.1    Detectors and Focal Planes

 

8.1.2    Electronics

 

8.1.3    Optical Components

Rename: 8.1.3 Optical Systems (now includes substance of 8.2.1)

8.1.4    Microwave / Radio

 

8.1.5    Lasers

 

8.1.6    Cryogenic / Thermal

 
 

Add: 8.1.7 Space Atomic Interferometry

8.2    Observatories

 

8.2.1    Mirror Systems

Delete: 8.2.1 Mirror Systems (merged into 8.1.3)

8.2.2    Structures and Antennas

 

8.2.3    Distributed Aperture

 
 

Add: 8.2.4 High Contrast Imaging and Spectroscopy Technologies

 

Add: 8.2.5 Wireless Spacecraft Technologies

8.3    In Situ Instruments / Sensor

 

8.3.1    Particles: Charged and Neutral

Merge 8.3.2 into a renamed 8.3.1, Particles, Fields, and Waves: Charged and Neutral Particles, Magnetic and Electric Fields

8.3.2    Fields and Waves

Delete 8.3.2 Fields and Waves (merged into 8.3.1)

Suggested Citation:"3 Roadmap Gaps and Structure." National Research Council. 2011. An Interim Report on NASA's Draft Space Technology Roadmaps. Washington, DC: The National Academies Press. doi: 10.17226/13228.
×
Draft TABS by NASA, Revision 10 Changes

8.3.3    In Situ

 
 

Add: 8.3.4 Surface Biology and Chemistry Sensors: Sensors to Detect and Analyze Biotic and Prebiotic Substances

   
TA09 Entry, Descent, and Landing Systems Several items have been merged and/or relocated or deleted.

9.1    Aeroassist and Atmospheric Entry

 

9.1.1    Rigid Thermal Protection Systems

 

9.1.2    Flexible Thermal Protection Systems

 

9.1.3    Rigid Hypersonic Decelerators

 

9.1.4    Deployable Hypersonic Decelerators

 

9.1.5    Instrumentation and Health Monitoring

Move: 9.1.5 into added 9.4.6 Instrumentation and Health Monitoring

9.1.6    Entry Modeling and Simulation

9.2    Descent

Merge 9.1.6 with 9.2.5 and 9.3.6 and move to added 9.4.5 EDL Modeling and Simulation

9.2.1    Attached Deployable Decelerators

9.2.2    Trailing Deployable Decelerators

 

9.2.3    Supersonic Retropropulsion

 

9.2.4    GN&C Sensors

Merge 9.2.4 with 9.3.4 and move to added 9.4.7 GN&C Sensors and Systems

9.2.5    Descent Modeling and Simulation

9.3    Landing

Merge 9.2.5 with 9.1.6 and 9.3.6 and move to added 9.4.5, EDL Modeling and Simulation

9.3.1    Touchdown Systems

9.3.2    Egress and Deployment Systems

 

9.3.3    Propulsion Systems

 

9.3.4    Large Body GN&C

Merge 9.3.4 with 9.2.4 and move to added 9.4.7, GN&C Sensors and Systems

9.3.5    Small Body Systems

9.3.6    Landing Modeling and Simulation

Merge 9.3.6 with 9.1.6 and 9.2.5 and move to added 9.4.5, EDL Modeling and Simulation

9.4    Vehicle Systems Technology

9.4.1    Architecture Analyses

Delete: 9.4.1 Architecture Analyses

9.4.2    Separation Systems

 

9.4.3    System Integration and Analyses

Note: In some places in the roadmap, 9.4.3 “Systems Integration and Analyses” is titled “Vehicle Technology.” Systems Integration and Analyses more accurately describes the content of this technology.

9.4.4    Atmosphere and Surface Characterization

 
  Add: 9.4.5 EDL Modeling and Simulation
  Add: 9.4.6 Instrumentation and Health Monitoring
  Add: 9.4.7 GN&C Sensors and Systems
   
TA10 Nanotechnology The steering committee made no changes to the structure of this roadmap, although NASA’s draft roadmap renamed or moved seven technologies in the TABS.
   

10.1  Engineered Materials and Structures

 

10.1.1  Lightweight Structures

Rename: 10.1.1 Lightweight Materials and Structures

10.1.2  Damage Tolerant Systems

 

10.1.3  Coatings

 

10.1.4  Adhesives

 

10.1.5  Thermal Protection and Control

 

10.2  Energy Generation and Storage

 

10.2.1  Energy Storage

Move 10.2.1 to 10.2.2 Energy Storage

10.2.2  Energy Generation

Move 10.2.2 to 10.2.1 Energy Generation

10.2.3  Energy Distribution

 

10.3  Propulsion

 
Suggested Citation:"3 Roadmap Gaps and Structure." National Research Council. 2011. An Interim Report on NASA's Draft Space Technology Roadmaps. Washington, DC: The National Academies Press. doi: 10.17226/13228.
×
Draft TABS by NASA, Revision 10 Changes

10.3.1  Propellants

Rename: 10.3.1 Nanopropellants

10.3.2  Propulsion Components

Rename: 10.3.2 Propulsion Systems

10.3.3  In-Space Propulsion

 

10.4  Sensors, Electronics and Devices

 

10.4.1  Sensors and Actuators

 

10.4.2  Nanoelectronics

Rename: 10.4.2 Electronics

10.4.3  Miniature Instruments

Rename: 10.4.3 Miniature Instrumentation
   
TA11 Modeling, Simulation, Information Technology, and Processing One technology has been split into two parts.

11.1  Computing

 

11.1.1  Flight Computing

 

11.1.2  Ground Computing

 

11.2  Modeling

 

11.2.1  Software Modeling and Model-Checking

 

11.2.2  Integrated Hardware and Software Modeling

 

11.2.3  Human-System Performance Modeling

 

11.2.4  Science and Engineering Modeling

Split 11.2.4 to create two separate technologies:
 

11.2.4a Science Modeling and Simulation

 

11.2.4b Aerospace Engineering Modeling and Simulation

11.2.5  Frameworks, Languages, Tools, and Standards

 

11.3  Simulation

 

11.3.1  Distributed Simulation

 

11.3.2  Integrated System Lifecycle Simulation

 

11.3.3  Simulation-Based Systems Engineering

 

11.3.4  Simulation-Based Training and Decision Support Systems

 

11.4  Information Processing

 

11.4.1  Science, Engineering, and Mission Data Lifecycle

 

11.4.2  Intelligent Data Understanding

 

11.4.3  Semantic Technologies

 

11.4.4  Collaborative Science and Engineering

 

11.4.5  Advanced Mission Systems

 
   
TA12 Materials, Structures, Mechanical Systems & Manufacturing The structure of this roadmap remains unchanged.
   

12.1  Materials

 

12.1.1  Lightweight Structure

 

12.1.2  Computational Design

 

12.1.3  Flexible Material Systems

 

12.1.4  Environment

 

12.1.5  Special Materials

 

12.2  Structures

 

12.2.1  Lightweight Concepts

 

12.2.2  Design and Certification Methods

 

12.2.3  Reliability and Sustainment

 

12.2.4  Test Tools and Methods

 

12.2.5  Innovative, Multifunctional Concepts

 

12.3  Mechanical Systems

 
Suggested Citation:"3 Roadmap Gaps and Structure." National Research Council. 2011. An Interim Report on NASA's Draft Space Technology Roadmaps. Washington, DC: The National Academies Press. doi: 10.17226/13228.
×
Draft TABS by NASA, Revision 10 Changes

12.3.1  Deployables, Docking and Interfaces

 

12.3.2  Mechanism Life Extension Systems

 

12.3.3  Electro-mechanical, Mechanical, and Micromechanisms

 

12.3.4  Design and Analysis Tools and Methods

 

12.3.5  Reliability / Life Assessment / Health Monitoring

 

12.3.6  Certification Methods

 

12.4  Manufacturing

 

12.4.1  Manufacturing Processes

 

12.4.2  Intelligent Integrated Manufacturing and Cyber Physical Systems

 

12.4.3  Electronics and Optics Manufacturing Process

 

12.4.4  Sustainable Manufacturing

 

12.5  Cross-Cutting

 

12.5.1  Nondestructive Evaluation and Sensors

 

12.5.2  Model-Based Certification and Sustainment Methods

 

12.5.3  Loads and Environments

 
   
TA13 Ground and Launch Systems Processing The structure of this roadmap remains unchanged.
   

13.1  Technologies to Optimize the Operational Life-Cycle

 

13.1.1  Storage, Distribution, and Conservation of Fluids

 

13.1.2  Automated Alignment, Coupling, and Assembly Systems

 

13.1.3  Autonomous Command and Control for Ground and Integrated Vehicle/Ground Systems

 

13.2  Environmental and Green Technologies

 

13.2.1  Corrosion Prevention, Detection, and Mitigation

 

13.2.2  Environmental Remediation and Site Restoration

 

13.2.3  Preservation of Natural Ecosystems

 

13.2.4  Alternate Energy Prototypes

 

13.3  Technologies to Increase Reliability and Mission Availability

 

13.3.1  Advanced Launch Technologies

 

13.3.2  Environment-Hardened Materials and Structures

 

13.3.3  Inspection, Anomaly Detection, and Identification

 

13.3.4  Fault Isolation and Diagnostics

 

13.3.5  Prognostics Technologies

 

13.3.6  Repair, Mitigation, and Recovery Technologies

 

13.3.7  Communications, Networking, Timing, and Telemetry

 

13.4  Technologies to Improve Mission Safety/Mission Risk

 
Suggested Citation:"3 Roadmap Gaps and Structure." National Research Council. 2011. An Interim Report on NASA's Draft Space Technology Roadmaps. Washington, DC: The National Academies Press. doi: 10.17226/13228.
×
Draft TABS by NASA, Revision 10 Changes

13.4.1  Range Tracking, Surveillance, and Flight Safety Technologies

 

13.4.2  Landing and Recovery Systems and Components

 

13.4.3  Weather Prediction and Mitigation

 

13.4.4  Robotics / Telerobotics

 

13.4.5  Safety Systems

 
   
TA14 Thermal Management Systems The steering committee made no changes to the structure of this roadmap, although NASA’s draft roadmap had a different name for two technologies.

14.1  Cryogenic Systems

14.1.1  Passive Thermal Control

 

14.1.2  Active Thermal Control

 

14.1.3  Integration and Modeling

Rename: 14.1.3 Systems Integration

14.2  Thermal Control Systems

 

14.2.1  Heat Acquisition

 

14.2.2  Heat Transfer

 

14.2.3  Heat Rejection and Energy Storage

 

14.3  Thermal Protection Systems

 

14.3.1  Entry / Ascent TPS

Rename: 14.3.1 Ascent / Entry TPS

14.3.2  Plume Shielding (Convective and Radiative)

 
14.3.3 Sensor Systems and Measurement Technologies

NOTE: The Technology Area Breakdown Structure as revised by the steering committee and panels is shown in Appendix C. Changes are explained in the report text in Chapter 3.

REFERENCES

National Research Council (NRC). 2008. Severe Space Weather Events—Understanding Societal and Economic Impacts, A Workshop Report. Washington, D.C.: The National Academies Press. Available at http://www.nap.edu/catalog/12507.html.

NRC. 2010. New Worlds, New Horizons in Astronomy and Astrophysics. Washington, D.C.: The National Academies Press. Available at http://www.nap.edu/catalog/12951.html.

White House. 2010. National Space Policy of the United States of America. Washington, D.C.: White House. Available at http://www.whitehouse.gov/sites/default/files/national_space_policy_6-2810.pdf.

Suggested Citation:"3 Roadmap Gaps and Structure." National Research Council. 2011. An Interim Report on NASA's Draft Space Technology Roadmaps. Washington, DC: The National Academies Press. doi: 10.17226/13228.
×
Page 14
Suggested Citation:"3 Roadmap Gaps and Structure." National Research Council. 2011. An Interim Report on NASA's Draft Space Technology Roadmaps. Washington, DC: The National Academies Press. doi: 10.17226/13228.
×
Page 15
Suggested Citation:"3 Roadmap Gaps and Structure." National Research Council. 2011. An Interim Report on NASA's Draft Space Technology Roadmaps. Washington, DC: The National Academies Press. doi: 10.17226/13228.
×
Page 16
Suggested Citation:"3 Roadmap Gaps and Structure." National Research Council. 2011. An Interim Report on NASA's Draft Space Technology Roadmaps. Washington, DC: The National Academies Press. doi: 10.17226/13228.
×
Page 17
Suggested Citation:"3 Roadmap Gaps and Structure." National Research Council. 2011. An Interim Report on NASA's Draft Space Technology Roadmaps. Washington, DC: The National Academies Press. doi: 10.17226/13228.
×
Page 18
Suggested Citation:"3 Roadmap Gaps and Structure." National Research Council. 2011. An Interim Report on NASA's Draft Space Technology Roadmaps. Washington, DC: The National Academies Press. doi: 10.17226/13228.
×
Page 19
Suggested Citation:"3 Roadmap Gaps and Structure." National Research Council. 2011. An Interim Report on NASA's Draft Space Technology Roadmaps. Washington, DC: The National Academies Press. doi: 10.17226/13228.
×
Page 20
Suggested Citation:"3 Roadmap Gaps and Structure." National Research Council. 2011. An Interim Report on NASA's Draft Space Technology Roadmaps. Washington, DC: The National Academies Press. doi: 10.17226/13228.
×
Page 21
Suggested Citation:"3 Roadmap Gaps and Structure." National Research Council. 2011. An Interim Report on NASA's Draft Space Technology Roadmaps. Washington, DC: The National Academies Press. doi: 10.17226/13228.
×
Page 22
Suggested Citation:"3 Roadmap Gaps and Structure." National Research Council. 2011. An Interim Report on NASA's Draft Space Technology Roadmaps. Washington, DC: The National Academies Press. doi: 10.17226/13228.
×
Page 23
Suggested Citation:"3 Roadmap Gaps and Structure." National Research Council. 2011. An Interim Report on NASA's Draft Space Technology Roadmaps. Washington, DC: The National Academies Press. doi: 10.17226/13228.
×
Page 24
Suggested Citation:"3 Roadmap Gaps and Structure." National Research Council. 2011. An Interim Report on NASA's Draft Space Technology Roadmaps. Washington, DC: The National Academies Press. doi: 10.17226/13228.
×
Page 25
Suggested Citation:"3 Roadmap Gaps and Structure." National Research Council. 2011. An Interim Report on NASA's Draft Space Technology Roadmaps. Washington, DC: The National Academies Press. doi: 10.17226/13228.
×
Page 26
Suggested Citation:"3 Roadmap Gaps and Structure." National Research Council. 2011. An Interim Report on NASA's Draft Space Technology Roadmaps. Washington, DC: The National Academies Press. doi: 10.17226/13228.
×
Page 27
Suggested Citation:"3 Roadmap Gaps and Structure." National Research Council. 2011. An Interim Report on NASA's Draft Space Technology Roadmaps. Washington, DC: The National Academies Press. doi: 10.17226/13228.
×
Page 28
Suggested Citation:"3 Roadmap Gaps and Structure." National Research Council. 2011. An Interim Report on NASA's Draft Space Technology Roadmaps. Washington, DC: The National Academies Press. doi: 10.17226/13228.
×
Page 29
Suggested Citation:"3 Roadmap Gaps and Structure." National Research Council. 2011. An Interim Report on NASA's Draft Space Technology Roadmaps. Washington, DC: The National Academies Press. doi: 10.17226/13228.
×
Page 30
Suggested Citation:"3 Roadmap Gaps and Structure." National Research Council. 2011. An Interim Report on NASA's Draft Space Technology Roadmaps. Washington, DC: The National Academies Press. doi: 10.17226/13228.
×
Page 31
Next: 4 Looking Ahead »
An Interim Report on NASA's Draft Space Technology Roadmaps Get This Book
×
Buy Paperback | $29.00 Buy Ebook | $23.99
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

For the National Aeronautics and Space Administration (NASA) to achieve many of its space science and exploration goals over the next several decades, dramatic advances in space technology will be necessary. NASA has developed a set of 14 draft roadmaps to guide the development of such technologies under the leadership of the NASA Office of the Chief Technologist (OCT). Each roadmap focuses on a particular technology area.

OCT requested that the National Research Council conduct a study to review the draft roadmaps, gather and assess relevant community input, and make recommendations and suggest priorities to inform NASA's decisions as it finalizes its roadmaps. The success of OCT's technology development program is essential, because technological breakthroughs have long been the foundation of NASA's successes, from its earliest days, to the Apollo program, to a vast array of space science missions and the International Space Station.

An Interim Report of NASA's Technology Roadmap identifies some gaps in the technologies included in the individual roadmaps. The report suggests that the effectiveness of the NASA space technology program can be enhanced by employing proven management practices and principles including increasing program stability, addressing facility issues, and supporting adequate flight tests of new technologies. This interim report provides several additional observations that will be expanded on in the final report to be released in 2012.

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    Switch between the Original Pages, where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

    « Back Next »
  6. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  7. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  8. ×

    View our suggested citation for this chapter.

    « Back Next »
  9. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!