•   Future space science missions capable of addressing the highest-priority goals in astrophysics will need a new generation of lower-cost astronomical telescopes that can utilize advanced coolers and camera systems, improved focal-plane arrays, and low-cost, ultra-stable, large-aperture mirrors. Likewise, high-contrast exoplanet imaging technologies with unprecedented sensitivity, field of view, and spectroscopy of faint objects are needed to enable discovery and characterization of exoplanets orbiting in the habitable zones of their host stars.

NASA’s 14 draft space technology roadmaps have identified a wide variety of opportunities to revitalize NASA’s advanced space technology development program. As it continues the process of identifying the highest-priority technology needs, the committee is making a distinction between technology development and engineering development. Technology development, which is the intended focus of the draft roadmaps, addresses the process of understanding and evaluating capabilities needed to improve or enable performance advantages over current state-of-the-art space systems. Technologies of interest include both hardware and software, as well as testing and evaluation of hardware (from the component level to the systems level) and software (including design tools) at various levels of technology readiness for application in future space systems. In contrast, engineering development, which generally attempts to implement and apply existing or available technology, is understood for the purposes of this study to be hardware, software, design, test, verification, and validation of systems in all phases of NASA’s acquisition process. In the final report, the set of high-priority technologies will not include items where engineering development is the next step in advancing capabilities. The highest priority will be assigned to areas that require technology development to improve capability, because engineering development generally does not fall within OCT’s scope.

The steering committee will issue a final report in early 2012. The purpose of this interim report is to provide some initial feedback on key topics related to the roadmaps. Chapter 2 includes high-level observations that the steering committee and its six supporting panels made in reviewing the draft technology roadmaps and interpreting some of the general cross-cutting themes from the workshop discussions and from other public comments received by the committee. Chapter 3 identifies gaps that the committee believes need to be brought to NASA’s attention through this interim report. The committee is addressing those gaps by changing the technology breakdown structure (TABS) as indicated in Table 3.1 and Appendix C. The evaluation and prioritization of high-priority technologies that will be presented in the final report are based on the TABS as modified by the committee in this interim report.


NRC (National Research Council). 2009. America’s Future in Space: Aligning the Civil Space Program with National Needs. Washington, D.C.: The National Academies Press. Available at http://www.nap.edu/catalog/12701.html.

The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement