other patients with type 2 diabetes—is that his cells respond only weakly to insulin. His blood sugar remains abnormally high even as his cells receive a strong signal to take the sugar up and metabolize it. The insidiously toxic effects of high levels of circulating sugar threaten the health of Patient 2’s blood vessels. As they age, many type 2 diabetics suffer severe consequences of a deteriorating vasculature. When minor wounds to their feet fail to heal, they often face amputation. As capillaries in their retinas rupture, many go blind. Responses to drug treatments, which have changed little for decades, are highly variable. Similarly, changes in exercise habits and diet help some patients more than others. There is a high likelihood that Patient 2 faces a future of escalating medical interventions, declining health, and increasing disability. The human, social, and economic costs associated with patients such as Patient 2 are daunting and distressingly typical of those seen for patients with chronic diseases throughout our aging population.

The Committee’s assigned task was to “explore the feasibility and need, and develop a potential framework, for creating a ‘New Taxonomy’ of human diseases based on molecular biology.” While the adjective “new” in the Committee’s charge provoked much lively discussion—there were varying opinions as to whether a new disease classification would be likely to differ dramatically in kind from existing taxonomies—there was immediate consensus on the more important point: everyone on the Committee agreed that a better taxonomy is needed and that we have a spectacular opportunity to create one. Moreover, the Committee clearly recognized that developing and implementing a Knowledge Network of Disease has the unique potential to go far beyond classification of disease to act as a catalyst that would help to revolutionize the way research is done and patients are treated. Patient 1 has a high likelihood of overcoming her life-threatening disease and going on to live a long, healthy, and productive life. These prospects are a direct result of a new ability to recognize, based on molecular analyses, the precise type of breast cancer she has and to target a rational therapy to her disease. The Committee believes that the best prospects for creating a similarly bright future for Patient 2 lies in achieving a similarly precise understanding of his disease by creating a Knowledge Network of Disease and an associated New Taxonomy.

The Committee recognized two key points about its charge: first, development of an improved disease taxonomy is only one facet, albeit an important one, of the challenge of leveraging advances in biomedical research to achieve better health outcomes for patients; secondly, no single stream of activity—led by any single segment of the biomedical research community—can tackle even this limited goal on its own. Both these points suggested that we could best address our charge by framing the “new-taxonomy” challenge broadly. Many of the conclusions and recommendations could apply, as well, to other challenges in “translational research” such as evaluating and refining existing treatments and developing new ones. However, disease classification is inextricably linked

The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement