referred to as parasitic losses) to achieve significantly reduced energy consumption.

•   Promote the development of technologies to improve truck safety, resulting in the reduction of fatalities and injuries in truck-involved crashes.

•   Promote the development and deployment of technologies that substantially reduce energy consumption and exhaust emissions during idling.

•   Promote the validation, demonstration, and deployment of advanced truck and bus technologies, and grow their reliability sufficient for adoption in the commercial marketplace.

As is discussed in more detail in this report, the Partnership has been evolving and making some changes since the Phase 1 review. For example, the 2006 roadmap has been revised and updated, and a series of technical white papers that supported the 2006 roadmap have also undergone revisions (DOE, 2010c, 2011). The committee reviewed these updated documents as part of the Phase 2 review.


The federal government, including the DOE, has addressed in varying degrees the economic, energy security, and environmental aspects of energy supply, distribution, and use for many decades, and the focus of efforts has changed from time to time. In recent years all three areas have had increasing attention by the administration and the Congress, given the rapid rise in energy prices in the 2007-2008 period, the severe recession of the past few years, the involvement in wars in the Middle East and the importance of that region for global oil supplies, and the attention to the environmental issue of global climate change. In addition, because of concerns about air quality and human health, a number of regulations have been passed over the years leading to more stringent exhaust emissions standards for both light-duty vehicles (cars, vans, and light trucks) and medium- and heavy-duty vehicles (MHDVs).

The economic concerns related to energy supply and energy use are generally framed in the language of affordability for the individual consumer as well as the impact on the U.S. economy from high energy prices and/or shortages. In recent years, not only have high energy prices been experienced but also there seems to be increased volatility in energy prices. Although the recent global and U.S. economic slowdowns depressed global as well as U.S. oil demand, worldwide oil consumption in general has risen rapidly during the past decade, mainly owing to rapid economic growth around the world. Nevertheless, even though the recent recession has moderated U.S. demand for imported oil, the Energy Information Administration (EIA, 2010) forecasts that the nation will continue to be highly dependent on imported oil. If global oil prices rise rapidly again because of supply-and-demand imbalances, future prices of oil will likely continue to put a strain on the U.S. economy. BP’s recent Statistical Review of World Energy also shows an increase in world oil consumption of 3.1 percent from 2009 to 2010, reaching a level of 87.4 million barrels per day (bbl/day), and an increase in U.S. oil consumption of 2 percent, reaching 19.1 million bbl/day (BP, 2011). As a consequence, the United States is pursuing alternative sources of fuel and attempting to increase efficiency in oil usage.

The issue of energy security with regard to petroleum not only entails the economic concerns noted above but also is framed in terms of the U.S. dependence on imported petroleum. Oil use in the United States has varied during the past few years, but it has been around 20 million bbl/day and was 18.8 million bbl/day in 2009 (EIA, 2010). Most of this petroleum is used in the transportation sector, and about 25 percent of that is used for MHDVs. Regarding gasoline consumption, EIA (2010) projects that total transportation fuel use will grow between 2009 and 2035 but that total U.S. gasoline consumption will remain at about 9 million bbl/day from 2009 to 2035: these projections include the phasing in of new fuel economy regulations for light-duty vehicles by 2016 as discussed in the next section (EIA, 2010; Newell, 2010; see Figure 1-1). Total U.S. diesel fuel consumption, much of which is consumed by MHDVs, is projected to change from about 3.42 million bbl/day in 2009 to almost 4.5 million bbl/day in 2035. Fuel consumption by heavy-duty vehicles is projected to increase substantially in the United States as well as worldwide, and consumption by heavy-duty vehicles (Classes 6, 7, and 8; see the section below on “Classes and Use Categories of Trucks and Buses”) consumption is expected to increase between 2010 and 2035 by 40 percent.3,4 Thus, in round numbers, assuming an oil price of $100/bbl, expenditures for diesel fuel alone would be on the order of $125 billion per year in the United States.

The 21CTP is focused on reducing the fuel usage of heavy-duty vehicles, which consume about 25 percent of the petroleum currently used in the transportation sector, and the expected 40 percent increase in consumption by heavy-duty vehicles between 2010 and 2035. That usage is in contrast to light-duty vehicle consumption, which is expected to remain relatively unchanged. EIA (2010), in its liquid fuels projections, includes increasing the use of biofuels, which somewhat dampens the demand for petroleum-based fuels. EIA (2010) projects net petroleum imports to change from about 8.97 million bbl/day in 2009 to 8.52 million bbl/day in 2035, whereas total liquid fuels use (including the use of


3 P. Davis, DOE, “U.S. Department of Energy Vehicle Technologies Program Overview,” presentation to the committee, September 8, 2010, Washington, D.C.

4 No U.S. fuel economy standards for medium- and heavy-duty vehicles are in effect for the current model year. A Notice of Proposed Rule Making was issued October 26, 2010. Final standards issued by the U.S. Environmental Protection Agency (EPA) and the U.S. Department of Transportation National Highway Traffic Safety Administration (NHTSA) on September 15, 2011, will apply to model year 2014 (EPA/NHTSA, 2011). EIA’s Annual Energy Outlook 2010 projections do not include such standards.

The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement