Achieving Traffic Safety Goals in the United States: Lessons from Other Nations has shown that other nations have established more aggressive initiatives and goals with impressive results, and those results suggest that even greater improvement in highway safety is possible in the United States. The committee also notes that overall improvements in highway safety also yield improvements in heavy-duty truck safety, as most heavy-duty truck fatal accidents involve a light-duty vehicle.

Recommendation 7-3. The DOT should evaluate the conclusions and recommendations of the TRB study Achieving Traffic Safety Goals in the United States: Lessons from Other Nations of highway safety in other nations, and consider the possibility of establishing more aggressive initiatives and goals for highway safety in general. The DOT should also consider establishing more aggressive goals for heavy-duty truck safety.


Three projects have been selected for awards under the DOE’s SuperTruck program; they will focus on measures to improve the fuel efficiency of Class 8 long-haul freight trucks. These projects will receive $115 million in DOE funding to develop and demonstrate full vehicle system-level technologies by 2015. Two of the project teams (Cummins, Inc. and Daimler Trucks North America, LLC) received ARRA funding for their projects, and Navistar, Inc. will be funded from DOE appropriations:

•   Cummins, Inc. (Columbus, Indiana): Develop and demonstrate a highly efficient and clean diesel engine, an advanced waste heat recovery system, an aerodynamic Peterbilt tractor and trailer combination, and a solid oxide fuel cell auxiliary power unit to reduce engine idling.

•   Daimler Trucks North America, LLC (Portland, Oregon): Develop and demonstrate technologies including optimized combustion, engine downsizing, electrification of auxiliary systems such as oil and water pumps, waste heat recovery, improved aerodynamics, hybridization, and possibly a fuel cell auxiliary power unit to reduce engine idling.

•   Navistar, Inc. (Warrenville, Illinois): Develop and demonstrate technologies to improve truck and trailer aerodynamics, combustion efficiency, waste heat recovery, hybridization, idle reduction, and reduced rolling resistance tires.

The objective of the three SuperTruck projects is to develop and apply technologies leading to a system-level demonstration of highly efficient and clean diesel-powered Class 8 trucks that:

•   Achieve a 50 percent increase in vehicle freight efficiency measured in ton-miles per gallon, which translates to a 33 percent reduction in load-specific fuel consumption (gallons per 1,000 ton-miles).

•   Achieve at least a 20 percent improvement through engine thermal efficiency development, and achieve 50 percent BTE under highway cruise conditions.

•   Evaluate potential approaches to 55 percent BTE in an engine via modeling, analysis, and potentially also laboratory tests

Finding 8-1. The three SuperTruck projects will be the flagship projects under the 21CTP for FY 2011 through FY 2014; the goals are in concert with recommendations made in the 2008 NRC Phase 1 report. A large portion of the DOE 21CTP budget will be devoted to these three projects. Each SuperTruck project integrates a wide range of technologies into a single demonstration vehicle (engine, waste heat recovery, driveline, rolling resistance, tractor and trailer aerodynamics, idle reduction, weight reduction technologies, etc.), and the contractors are pursuing sufficiently different technical paths to avoid excessive duplication of effort. The results will help determine which fuel-saving technologies are ready and cost-effective for original equipment manufacturer (OEM)-level product development programs.

Finding 8-4. The committee believes that the SuperTruck project teams have developed plans that address the needs of the SuperTruck program and that have a reasonable chance for success. The keys to success include proper implementation of the plans along with the flexibility to adapt to new information and intermediate results during the course of the project.

Finding 8-5. The SuperTruck projects allow each team to design its own test duty cycle(s) within certain constraints. One negative consequence of this approach is that the three trucks may never be tested using a common cycle for comparison.

Finding 8-6. The SuperTruck projects go beyond the scope of previous 21CTP projects. Instead of relying entirely on simulations and laboratory testing, each of these projects will result in a drivable truck. The committee believes that it is important to take technologies that have been developed to date and implement them in a real vehicle. Often, the application of new technologies in real-world applications yields unexpected results, and these results must be explored before any new technology can be considered ready for production implementation.

Recommendation 8-2. The DOE and the SuperTruck contractors should agree on at least one common vehicle duty

The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement