occur in space. Furthermore, the committee suggests that the tumor studies should be coupled with appropriate mechanistic investigations to provide an understanding of the underlying carcinogenic processes.

Probabilistic Risk Assessment

The committee notes that the risk projections discussed in NASA’s proposed space radiation cancer risk assessment model and uncertainties are not presented or intended as being based on a probabilistic risk assessment (PRA) approach. NASA’s proposed model is a health-effects model intended to provide estimates of cancer risk and uncertainties for defined space radiation exposure scenarios. More generally, however, the cancer risk to astronauts is dependent on much more than a defined scenario model of health effects, with engineered barriers, in the space radiation environment. Experience with full-scope PRAs of complex systems indicates the importance of accounting for the “what can go wrong during actual operations” scenarios, as such scenarios generally drive the overall risk. Thus, the committee suggests that comprehensive, mission-specific PRAs also be considered so as to enable accountability for the “what can go wrong” scenarios in the overall risk projections.

REFERENCES

Cardis, E., Vrijheid, M., Blettner, M., Gilbert, E., Hakama, M., Hill, C., Howe, G., Kaldor, J., Muirhead, C.R., Schubauer-Berigan, M., and Yoshimura, T., et al. 2007. The 15-Country Collaborative Study of Cancer Risk among Radiation Workers in the Nuclear Industry: Estimates of Radiation-Related Cancer Risks. Radiation Research 167(4):396-416.

Cucinotta, F.A., Kim, M.-H.Y., and Chappell, L.J. 2011. Space Radiation Cancer Risk Projections and Uncertainties—2010. NASA/TP-2011-216155. NASA Johnson Space Center, Houston, Tex. July.

EPA (Environmental Protection Agency). 2011. EPA Radiogenic Cancer Risk Models and Projections for the U.S. Population. U.S. Environmental Protection Agency, Washington, D.C.

ICRP (International Commission on Radiological Protection). 2007. The 2007 Recommendations of the International Commission on Radiological Protection. ICRP Publication 103. Ann ICRP 37 (2-4). International Commission on Radiological Protection, Ottawa, Ontario, Canada.

ICRP. 2011. Early and Late Effects of Radiation in Normal Tissues and Organs: Threshold Doses for Tissue Reactions in a Radiation Protection Context. Draft Report for Consultation. ICRP Ref 4844-6029-7736. International Commission on Radiological Protection, Ottawa, Ontario, Canada. January 20.

Jacob, P., Ruhm, W., Walsh, L., Blettner, M., Hammer, G., and Zeeb, H. 2009. Is cancer risk of radiation workers larger than expected? Occupational and Environmental Medicine 66:789-796.

Muirhead, C.R., O’Hagan, J.A., Haylock, R.G.E., Phillipson, M.A., Willcock, T., Berridge, G.L.C., and Zhang, W. 2009. Mortality and cancer incidence following occupational radiation exposure: Third analysis of the National Registry for Radiation Workers. British Journal of Cancer 100:206-212.

NASA (National Aeronautics and Space Administration). 2005. NASA Space Flight Human System Standard, Volume 1: Crew Health. NASA-STD-3001. (Approved 03-05-2007) NASA, Washington, D.C.

NCRP (National Council on Radiation Protection and Measurements). 2000. Radiation Protection Guidance for Activities in Low-Earth Orbit. NCRP Report No. 132. NCRP, Bethesda, Md.

NCRP. 2006. Information Needed to Make Radiation Protection Recommendations for Space Missions Beyond Low-Earth Orbit. NCRP Report No. 153. NCRP, Bethesda, Md.

NIH (National Institutes of Health). 2003. Report of the NCI-CDC Working Group to Revise the 1985 NIH Radioepidemiological Tables. NIH Publication No. 03-5387. Bethesda, Md.

NRC (National Research Council). 2006. Health Risks from Exposure to Low Levels of Ionizing Radiation: BEIR VII Phase 2. The National Academies Press, Washington, D.C.

Preston, D.L., Ron, E., Tokuoka, S., Funamoto, S., Nishi N., Soda, M., Mabuchi, K., and Kodama, K. 2007. Solid cancer incidence in atomic bomb survivors: 1958-1998. Radiation Research 168:1-64.

Shilnikova, N.S., Preston, D.L., Ron, E., Gilbert, E.S., Vassilenko, E.K., Romanov, S.A., Kuznetsova, I.S., Sokolnikov, M.E., Okatenko, P.V., Kreslov, V.V., and Koshurnikova, N.A. 2003. Cancer mortality risk among workers at the Mayak Nuclear Complex. Radiation Research 159(6):787-798.

UNSCEAR (United Nations Scientific Committee on the Effects of Atomic Radiation). 2006. Studies of Radiation and Cancer. Report to the General Assembly, with Scientific Annexes A and B. United Nations. New York.



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement