associated with human mobility to be mobility element sustainability, dust control, and human interaction with autonomous robotics.

David Wetergreen (Carnegie Mellon University) provided a commentary via telephone on the crosscutting nature of robotic mobility throughout the draft roadmaps and stressed that an emphasis was needed on robotic mobility in support of human exploration. He considered this to be a technology gap. He suggested that the top challenges were wheel design and terrain modeling, mechanisms design, and communication between humans and robotic mobility systems.

In the discussion session that followed these presentations, the panel asked about the latest status of suitports in architecture trades. One of the speakers responded that determining whether suitports or airlocks are better suited to a particular vehicle depends heavily on the environmental conditions of the vehicle.

Session 5: Advanced Habitat Systems

Marc Cohen (ex-NASA) started the Advanced Habitat Systems session with a briefing on the need for evidence-based performance requirements for advanced habitat systems. He also identified five showstoppers for deep space exploration by humans: the effects of reduced gravity, radiation, dust, the need for regenerative and bioregenerative life support, and planetary protection (to prevent both forward and backward contamination).

Larry Bell (University of Houston) provided a commentary on design aspects necessary for deep space habitats. He emphasized the need for commonality, simplicity, and autonomy, and noted that the level of acceptable risk is linked to mass requirements and, hence, system design. Regarding risk, Bell stated that NASA and the public would need to accept a higher level of crew risk to enable long-duration exploration missions. He also suggested that the top challenges to be overcome are simplifying complex systems, increasing commonality, adapting high-TRL technologies for exploration purposes, and improving space suit durability.

Session 6: Mission Operations and Safety

Paul Hill (NASA-JSC), Director of Mission Operations, started the Mission Operations and Safety session with a commentary on the current status of mission operations at Johnson Space Center. Relative to the draft roadmap for TA07, he noted that autonomy of mission operations is not driven by the concept of operations but rather by the autonomy built into the spacecraft and that the associated certification requirements drive the design and costs. Additionally, Hill suggested the top challenges to be overcome are the communications lag time on deep space missions, autonomous recovery software to address these lag times, and virtual reality and on-board simulation and training.

Nigel Packham (NASA Johnson Space Center) provided his assessment of the mission operations and safety section of the draft roadmap for TA07, indicating that it correctly identifies crew autonomy to be a vital aspect of the current plan-train-fly approach to crew training for missions beyond LEO. He also notes, however, that the draft roadmap fails to identify quantitative models that could account for the risks posed to crews beyond LEO.

Session 7: Crosscutting Systems: Dust Mitigation

Mark Hyatt (NASA-GRC) started the Dust Mitigation session with a brief overview of the Dust Management Project and a review of the dust issues encountered during Apollo missions. He identified the major operational challenges associated with dust as surface obscuration during descent, coating and contamination of surfaces, reduced crew efficiency, and human exposure to dust (and potential health effects). Lastly, Hyatt provided a description and TRL status for three promising dust mitigation technologies: electrodynamic dust shields, lotus coatings, and space plasma alleviation of regolith concentrations in lunar environments by discharge (also known as SPARCLED).

In the discussion session, the panel asked if there were significant differences between lunar and martian dust. Hyatt answered in the affirmative, although some dust mitigation technologies are likely to work at both destinations. The panel then directed a question to the TA07 Roadmap team asking if simulant production was included



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement