Cover Image


View/Hide Left Panel

embodied in any best practices protocol for induced seismicity can be complicated by the challenges of determining whether any seismicity felt in a region with injection wells is induced or is due to natural, geologic causes (see Chapter 1). However, we suggest that the benefit of the collective dialogue and establishing best practices in the event of a felt seismic event is in itself constructive, with few or no negative consequences.


Induced seismicity does not fall squarely in the sole purview of any single government agency and, in fact, requires input and cooperation among several local, state, and federal entities, as well as operators, researchers, and the public (see Chapter 4). Because of these shared interests and potential responsibilities, the committee suggests that the agency with authority to issue a new injection permit or the authority to revise an existing injection permit is the most appropriate agency to oversee decisions made with respect to induced seismic events, whether before, during, or after an event has occurred. In many cases this responsibility would fall to state agencies that permit injection wells. In areas that are known by experience to be susceptible to induced seismicity, a best practices protocol could be incorporated into the approval process for any proposed (new) injection permit. In areas where induced seismicity occurs, but was not anticipated in a particular area, existing injection permits relevant to that area could be revised to include a best practices protocol.

Two Checklists to Evaluate the Potential for Induced Seismicity and the Probable Cause of Observed Events

Checklists can be convenient tools for government authorities and operators to discuss and assess the potential to trigger seismic events through injection, and to aid in determining if a seismic event is or was induced. Two checklists, one to address each of these two circumstances—the potential for induced seismicity and the determination of the cause of a felt event—were developed nearly two decades ago by Davis and Frohlich (1993) to address each of these circumstances (summarized in the sections that follow). Their work recommends a list of ten “yes” or “no” questions to quantify “whether a proposed injection project is likely to induce a nearby earthquake” and a list of seven similar questions to quantify “whether an ongoing injection project has induced an earthquake.”


The ten-question checklist evaluates four factors related to possible earthquake hazards: historical background seismicity, local geology, the regional state of stress, and the nature of the proposed injection. Table 6.1, modified from Davis and Frohlich (1993), compares

The National Academies of Sciences, Engineering, and Medicine
500 Fifth St. N.W. | Washington, D.C. 20001

Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement