Cover Image


View/Hide Left Panel

injected or withdrawn (e.g., Nicholson and Wesson, 1990). Controlled experiments both at Rangely, Colorado (Raleigh et al., 1976; see also Chapter 2), and in Matsushiro, Japan (Ohtake, 1974), were undertaken to directly control the behavior of large numbers of small seismic events by manipulation of fluid injection pressure.

Fluid withdrawal has also been observed to cause seismic events. McGarr (1991) identified three earthquakes in California caused by or likely related to extraction of oil: (1) Coalinga, in May 1983, M 6.5; (2) Kettleman North Dome, in August 1985, M 6.1; and (3) Whittier Narrows, in October 1987, M 5.9. All three events occurred in a crustal anticline close to active oil fields and on or near seismically active faults. Although seismic deformation (uplift) observed during each earthquake has been suggested to have a correlation to removal of hydrocarbon mass (McGarr, 1991), well-documented and ongoing uplift and seismicity over the entire region, related to natural adjustments of the Earth’s crust, make it difficult to determine unequivocally if these were induced seismic events. In the mid-1970s and 1980s three large earthquakes (measuring M ~ 7) were recorded near the Gazli gas field in Uzbekistan in an area that had largely been aseismic. Although precise locations and magnitudes of the earthquakes were not possible to determine, a potential relation to gas extraction was suggested based on available data and modeling (Adushkin et al., 2000; Grasso, 1992; Simpson and Leith, 1985).

Some surface effects associated with energy technologies may occur (without associated shaking at the surface) that result from surface subsidence or “creep” rather than from slip along a fault. Examples include the Baldwin Hills dam failure in California (Appendix F).


Human activity, including injection and extraction of fluids from the Earth, can induce seismic events. While the vast majority of these events have intensities below that which can be felt by people living directly at the site of fluid injection or extraction, potential exists to produce significant seismic events that can be felt and cause damage and public concern. Examination of known examples of induced seismicity can aid in determining what the risks are for energy technologies. These examples also provide data on the types of research required to better constrain induced seismicity risks and to develop options for best practices to define and alleviate risks from energy-related induced seismicity. These issues are explored in the remaining chapters of this report.


Adushkin, V.V., V.N. Rodionov, S.T. Turuntnev, and A.E. Yodin. 2000. Seismicity in the oil field. Oilfield Review Summer: 2-17.

Davis, S.D. 1985. Investigations of Natural and Induced Seismicity in the Texas Panhandle. M.S. thesis. The University of Texas, Austin. 230 pp.

The National Academies of Sciences, Engineering, and Medicine
500 Fifth St. N.W. | Washington, D.C. 20001

Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement