Moore, L.M. 1981. Principle Component Analysis in Linear Systems: Controllability, Observability, and Model Reduction. IEEE Transactions on Automatic Control 26(1):17-31.

Moore, L.M., and M.D. McKay. 2002. Orthogonal Arrays for Computer Experiments to Assess Important Inputs. D.W. Scott (Ed.). Pp. 546-551 in Proceedings of PSAM6, 6th International Conference on Probabilistic Safety Assessment and Management.

Morris, M. 1991. Factorial Sampling Plans for Preliminary Computational Experiments. Technometrics 33(2):161-174.

Najm, H.N. 2009. Uncertainty Quantification and Polynomial Chaos Techniques in Computational Fluid Dynamics. Annual Review of Fluid Mechanics 41:35-52.

Neal, R.M. 1993. Probabilistic Inference Using Markov Chain Monte Carlo Methods. CRG-TR-93-1. Toronto, Canada: Department of Computer Science, University of Toronto.

Noor, A.K., and J.M. Peters. 1980. Nonlinear Analysis via Global-Local Mixed Finite Element Approach. International Journal for Numerical Methods in Engineering 15(9):1363-1380.

Oakley, J. 2004. Estimating Percentiles of Uncertain Computer Code Outputs. Journal of the Royal Statistical Society: Series C (Applied Statistics) 53(1):83-93.

Oakley, J., and A. O’Hagan. 2002. Bayesian Inference for the Uncertainty Distribution of Computer Model Outputs. Biometrika 89(4):769-784.

Oakley, J., and A. O’Hagan. 2004. Probabilistic Sensitivity Analysis of Complex Models: A Bayesian Approach. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 66(3):751-769.

Owen, A.B. 1997. Monte Carlo Variance of Scrambled Net Quadrature. SIAM Journal on Numerical Analysis 34(5):1884-1910.

Ranjan, P., D. Bingham, and G. Michailidis. 2008. Sequential Experiment Design for Contour Estimation from Complex Computer Codes. Technometrics 50(4):527-541.

Rewienski, M., and J. White. 2003. A Trajectory Piecewise-Linear Approach to Model Order Reduction and Fast Simulation of Nonlinear Circuits and Micromachined Devices. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 22(2):155-170.

Sacks, J., W.J. Welch, T.J. Mitchell, and H.P. Win. 1989. Design and Analysis of Computer Experiments. Statistical Science 4(4):409-423.

Saltelli, A., and I.M. Sobol. 1995. About the Use of Rank Transformation in Sensitivity Analysis of Model Output. Reliability Engineering and System Safety 50(3):225-239.

Saltelli, A., K. Chan, and E.M. Scott. 2000. Sensitivity Analysis. Wiley Series in Probability and Statistics, Vol. 535. Hoboken, N.J.: Wiley.

Seber, G.A.F., and C.J. Wild. 2003. Nonlinear Regression. Hoboken, N.J.: Wiley.

Shahabuddin, P. 1994. Importance Sampling for the Simluation of Highly Reliable Markovian Systems. Management Science 40(3):333-352.

Sirovich, L. 1987. Turbulence and the Dynamics of Coherent Structures. Part I: Coherent Structures. Quarterly Journal of Applied Mathematics XLV(2):561-571.

Sobol, W.T. 1993. Analysis of Variance for “Component Stripping” Decomposition of Multiexponential Curves. Computer Methods and Programs in Biomedicine 39(3-4):243-257.

Soize, C., and R. Ghanem. 2004. Physical Systems with Random Uncertainties: Chaos Representations with Arbitrary Probability Measure. SIAM Journal on Scientific Computing 26(2):395-410.

Tang, B. 1993. Orthogonal Array-Based Latin Hypercubes. Journal of the American Statistical Association 88(424):1392-1397.

Weickum, G., M.S. Eldred, and K. Maute. 2006. Multi-Point Extended Reduced-Order Modeling for Design Optimization and Uncertainty Analysis. Paper AIAA-2006-2145. Proceedings of the 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference (2nd AIAA Multidisciplinary Design Optimization Specialist Conference). May 1-4, 2006, Newport, R.I.

Xiu, D. 2007. Efficient Collocational Approach for Parametric Uncertainty Analysis. Communications in Computational Physics 2:293-309.

Xiu, D. 2010. Numerical Methods for Stochastic Computations: A Spectral Method Approach. Princeton, N.J.: Princeton University Press.

Xiu, D., and G.E. Karniadakis. 2002. Modeling Uncertainty in Steady State Diffusion Problems via Generalized Polynomial Chaos. Computer Methods in Applied Mechanics and Engineering 191(43):4927-4943.



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement