Flath, H.P., L.C. Filcox, V. Akçelik, J. Hill, B. Van Bloeman Waanders, and O. Glattas. 2011. Fast Algorithms for Bayesian Uncertainty Quantification in Large-Scale Linear Inverse Problems Based on Low-Rank Partial Hessian Approximations. SIAM Journal on Scientific Computing 33(1):407-432.

Fuentes, M., and A.E. Raftery. 2004. Model Validation and Spatial Interpolation by Combining Observations with Outputs from Numerical Models via Bayesian Melding. Journal of the American Statistical Association, Biometrics 6:36-45.

Furnish, M.D., M.B Boslough, and G.T. Gray. 1995. Dynamical Properties Measurements for Asteroid, Comet and Meteorite Material Applicable to Impact Modeling and Mitigation Calculations. International Journal of Impact Engineering 17(3):53-59.

Galbally, D.K., K. Fidkowski, K. Willcox, and O. Ghattas. 2010. Nonlinear Model Reduction for Uncertainty Quantification in Large-Scale Inverse Problems. International Journal for Numerical Methods in Engineering 81:1581-1608.

Gelfand, A.E., and S.K. Ghosh. 1998. Model Choice: A Minimum Posterior Predictive Loss Approach. Biometrica 85(1):1-11.

Gelman, A., X.L. Meng, and H. Stern. 1996. Posterior Predictive Assessment of Model Fitness via Realized Discrepancies. Statistica Sinica 6:733-769.

Ghanem, R., and A. Doostan. 2006. On the Construction and Analysis of Stochastic Predictive Models: Characterization and Propagation of the Errors Associated with Limited Data. Journal of Computational Physics 217(1):63-81.

Gneiting, T., and A.E. Raftery. 2005. Weather Forecasting with Ensemble Methods. Science 310(5746):248-249.

Goldstein, M., and J.C. Rougier. 2004. Probabilistic Formulations for Transferring Inferences from Mathematical Models to Physical Systems. SIAM Journal on Scientific Computing 26(2):467-487.

Hastie, T., R. Tibshirani, and J.H. Friedman. 2009. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. New York: Springer.

Higdon, D., M. Kennedy, J.C. Cavendish, J.A. Cafeo, and R.D. Ryne. 2005. Combining Field Data and Computer Simulations for Calibration and Prediction. SIAM Journal on Scientific Computing 26(2):448-466.

Higdon, D., J. Gattiker, B.Williams, and M. Rightley. 2008. Computer Model Calibration Using High-Dimensional Output. Journal of the American Statistical Association 103(482):570-583.

Hills, R., and T. Trucano. 2002. Statistical Validation of Engineering and Scientific Models: A Maximum Likelihood Based Metric. SAND2001-1789. Albuequerque, N. Mex.: Sandia National Laboratories.

Hills, R.G., K.J. Dowding, and L. Swiler. 2008. Thermal Challenge Problem: Summary. Computer Methods in Applied Mechanics and Engineering 197:2490-2495.

Hoeting, J.A., D. Madilgan, A.E. Raftery, and C.T. Volinsky. 1999. Bayesian Model Averaging: A Tutorial. Statistical Science 15:382-401.

Kaipio, J.P., and E. Somersalo. 2005. Statistical and Computational Inverse Problems. New York: Springer.

Kaipio, J.P., V. Kolehmainen, I. Somersalo, and M. Vauhkonen. 2000. Statistical Inversion and Monte Carlo Sampling Methods in Electrical Impedance Tomography. Inverse Problems 16:1487.

Kennedy, M.C., and A. O’Hagan. 2001. Bayesian Calibration of Computer Models. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 63:425-464.

Kersting, A.B., D.W. Efurd, D.L. Finnegan, D.J. Rokop, D.K. Smith, and J.L.Thompson. 1999. Migration of Plutonium in Ground Water at the Nevada Test Site. Nature 397(6714):56-59.

Kirk, B., J. Peterson, R. Stogner, and G. Carey. 2006. A C++ Library for Parallel Adaptive Mesh Refinement/Coarsening Simulations. Engineering with Computers 22(3-4):237-254.

Klein, R., S. Doebling, F. Graziani, M. Pilch, and T. Trucano. 2006. ASC Predictive Science Academic Alliance Program Verification and Validation Whitepaper. UCRL-TR-220711. Livermore, Calif.: Lawrence Livermore National Laboratory.

Klir, G.J., and B. Yuan. 1995. Fuzzy Sets and Fuzzy Logic. Upper Saddle River, N.J.: Prentice Hall.

Knupp, P., and K. Salari. 2003. Verification of Computer Codes in Computational Science and Engineering. Boca Raton, Fla.: Chapman and Hall/CRC.

Knutti, R., R. Furer, C. Tebaldi, J. Cermak, and G.A. Mehl. 2010. Challenges in Combining Projections in Multiple Climate Models. Journal of Climate 23(10):2739-2758.

Kumamoto, H., and E.J. Henley. 1996. Probabalistic Risk Assessment and Management for Engineers and Scientists. New York: IEEE Press.

Lehmann, E.L., and J.P. Romano. 2005. Testing Statistical Hypotheses. New York: Springer.

Lieberman, C., K. Willcox, and O. Ghattas. 2010. Parameter and State Model Reduction for Large-Scale Statistical Inverse Problems. SIAM Journal on Scientific Computing 32:2523-2542.

Loeppky, J., D. Bingham, and W.J. Welch. 2011. Computer Model Calibration or Tuning in Practice. Technometrics. Submitted for publication.

Long, K., R. Kirty, and B. Van Bloemen Waanders. 2010. Unified Embedded Parallel Finite Element Computations via Software-Based Frechet Differentiation. SIAM Journal on Scientific Computing 32(6):3323-3351.

Lorenc, A.C. 2003. The Potential of the Ensemble Kalman Filter for NWP—A Comparison with 4D-Var. Quarterly Journal of the Royal Meteorological Society 129:3183-3203.

Lucas, L.J., H. Owhadi, and M. Ortiz. 2009. Rigorous Verification, Validation, Uncertainty Quantification and Certification Through Concentration-of-Measure Inequalities. Computer Methods in Applied Mechanics and Engineering 57(51-52):4591-4609.

Marzouk, Y.M., and H.N. Najm. 2009. Dimensionality Reduction and Polynomial Chaos Acceleration of Bayesian Inference in Inverse Problems. Journal of Computational Physics 228:1862-1902.

Meehl, G.A., C. Covey, T. Delworth, M. Latif, B. McAvaney, J.F.B. Mitchell, B. Stouffer, and K.E. Taylor. 2007. The WCRP CMIP3 Multi-model Dataset. Bulletin of the American Meteorological Society 88:1388-1394.



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement