Mosleh, A., D.M. Rasmuson, F.M. Marshall, and U.S. Nuclear Regulatory Commission. 1998. Guidelines on Modeling Common-Cause Failures in Probabilistic Risk Assessment. Washington, D.C.: Safety Programs Division, Office for Analysis and Evaluation of Operational Data, U.S. Nuclear Regulatory Commission.

Naevdal, G., L. Johnsen, S. Aanonsen, and D. E. Vefring. 2005. Reservoir Monitoring and Continuous Model Updating Using Ensemble Kalman Filter. Society of Petroleum Engineers Journal 10(1):66-74.

NRC (National Research Council). 2007. Models in Environmental Regulatory Decision Making, Washington, D.C.: National Academies Press.

NSF (National Science Foundation). 2010. Minutes of the Advisory Committee Meeting. April 1-2, 2010. Available at Accessed March 20, 2012.

Neuman, S.P. and J.W. Wierenga. 2003. A Comprehensive Strategy of Hydrogeologic Modeling and Uncertainty Analysis for Nuclear Facilities and Sites. Washington, D.C.: U.S. Nuclear Regulatory Commission.

Oakley, J.E., and A. O’Hagan. 2004. Probabilistic Sensitivity Analysis of Complex Models: A Bayesian Approach. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 66(3):751-769.

Oberkampf, W.L., and C. Roy. 2010. Verification and Validation in Scientific Computing. Cambridge, U.K.: Cambridge University Press.

Oberkampf, W.L., and T.G. Trucano. 2000. Validation Methodology in Computational Fluid Dynamics. American Institute of Aeronautics and Astronautics, AIAA 200-2549, Fluids 2000 Conference, Denver, Colo.

Oberkampf, W.L., T.G. Trucano, and C. Hirsch. 2004. Verification, Validation, and Predictive Capability in Computational Engineering and Physics. Applied Mechanical Reviews 57:345.

Oden, J.T., and S. Prudhomme. 1998. A Technique for A Posteriori Error Estimation of h-p Approximations of the Stokes Equations. Advances in Adaptive Computational Methods in Mechanics 47:43-63.

Oliver, D.S., B.C. Luciane, and A.C. Reynolds. 1997. Markov Chain Monte Carlo Methods for Conditioning a Permeability Field to Pressure Data. Mathematical Geology 29:61-91.

Picard, R.R. 2005. Importance Sampling for Simulation of Markovian Physical Processes. Technometrics 47(2):202-211.

Prudhomme, S., and J.T. Oden. 1999. On Goal-Oriented Error Estimation for Elliptic Problems: Application to Pointwise Errors. Computation Methods in Applied Mechanics and Engineering 176:313-331.

Rabinovich, S. 1995. Measurement Errors, Theory and Practice. New York: The American Institute of Physics.

Raftery, A.E. 1996. Hypothesis Testing and Model Selection via Posterior Simulation. Pp. 163-168 in Practical Markov Chain Monte Carlo. London, U.K.: Chapman and Hall.

Roache, P. 1998. Verification and Validation in Computational Science and Engineering. Socorro, N.Mex.: Hermosa Publishers.

Robins, J.M., A. van der Vaart, and V. Ventura. 2000. Asymptotic Distribution of P Values in Composite Null Models. Journal of the American Statistical Association 95(452):1143-1156.

Rougier, J., M. Goldstein, and L. House. 2010. Assessing Model Discrepancy Using a Multi-Model Ensemble. University of Bristol Statistics Department Technical Report #08:17. Bristol, U.K.: University of Bristol.

Sain, S.R., R. Furrer, and N. Cressie. 2011. A Spatial Analysis of Multivariate Output from Regional Climate Models. Annals of Applied Statistics 5(1):150-175.

Scheffer, M., J. Bascompte, W.A. Brock, V. Brovkin, S.R. Carpenter, V. Dakos, H. Held, H.E.H. Van Nes, M. Rietkerk, and G. Sugihara. 2009. Early-Warning Signals for Critical Transitions. Nature 461(7260):53-59.

Shafer, G. 1976. A Mathematical Theory of Evidence. Princeton, N.J.: Princeton University Press.

Smith, R.L., C. Tebaldi, D. Nychka, and L.O. Mearns. 2010. Bayesian Modeling of Uncertainty in Ensembles of Climate Models. Journal of the American Statistical Association 104(485):97-116.

Steinberg, S., and P. Roache. 1985. Symbolic Manipulation and Computational Fluid Dynamics. Journal of Computational Physics 57(2):251-284.

Strouboules, F., I. Babuska, D.K. Dalta, K. Copps, and S.K. Gangarai. 2000. A Posteriori Estimation and Adaptive Control of the Error in the Quantity of Interest. Part 1: A Posterioric Estimations of the Error in the Von Mises Stress and the Stress Intensity Factor. Computational Methods in Applied Mechanics and Engineering 181:261-294.

Tarantola, A. 2005. Inverse Problem Theory and Methods for Model Parameter Estimation. Philadelphia, Pa.: SIAM.

Tebaldi, C., and R. Knutti. 2007. The Use of the Multi-Model Ensemble in Probabilistic Climate Projections. Philosophical Transactions of the Royal Society, Series A 365:2053-2075.

Tebaldi, C., R.L. Smith, D. Nychka, and L.O. Mearns. 2005. Quantifying Uncertainty in Projections of Regional Climate: A Bayesian Approach to the Analysis of Multimodel Ensembles. Journal of Climate 18:1524-1540.

Thornton, J. 2011. No Testing Allowed: Nuclear Stockpile Stewardship Is a Simulation Challenge. Mechanical Engineering-CIME 133(5):38-41.

Tonkin, M., and J. Doherty. 2009. Calibration-Constrained Monte Carlo Analysis of Highly Parameterized Models Using Subspace Techniques. Water Resources Research 45(12):w00b10.

Wan, E.A., and R. Van Der Merwe. 2000. The Unscented Kalman Filter for Nonlinear Estimation. Pp.153-158 in Adaptive Systems for Signal Processing, Communications, and Control Symposium 2000. AS-SPCC/IEEE, Lake Louise, Alta., Canada.

Wang, S., W. Chen, and K.L. Tsui. 2009. Bayesian Validation of Computer Models. Technometrics 51(4):439-451.

Welch, G., and G. Bishop. 1995. An Introduction to the Kalman Filter. Technical Report 95-041. Chapel Hill: University of North Carolina.

Wu, C.F.J., and M. Hamada. 2009. Experiments: Planning, Analysis, and Optimization. New York: Wiley.

Youden, W.J. 1961. Uncertainties in Calibration. Precision Measurement and Calibration: Statistical Concepts and Procedures 1:63.

Youden, W.J. 1972. Enduring Values. Technometrics 14(1)1-15.

The National Academies of Sciences, Engineering, and Medicine
500 Fifth St. N.W. | Washington, D.C. 20001

Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement