National Academies Press: OpenBook

Community Colleges in the Evolving STEM Education Landscape: Summary of a Summit (2012)

Chapter: 3 The Loss of Students from STEM Majors

« Previous: 2 Expanding Minority Participation in Undergraduate STEM Education
Suggested Citation:"3 The Loss of Students from STEM Majors." National Academy of Engineering and National Research Council. 2012. Community Colleges in the Evolving STEM Education Landscape: Summary of a Summit. Washington, DC: The National Academies Press. doi: 10.17226/13399.
×

3

The Loss of Students from STEM Majors

Important Points Made by the Speaker

•  More than half of students who intend to major in a science or engineering field switch to a different major in college, and this percentage is even higher for community college students.

•  Students who take fewer STEM classes their first semester are more likely to switch from STEM majors.

•  The culture of STEM education and potential earnings in the workplace appear to be significant factors in students’ decisions to remain in or abandon STEM majors.

Students who intend to work as scientists, technicians, engineers, or mathematicians typically choose to major in a STEM field in college. Study of the choices students make regarding majors both before and during college therefore can reveal important information about the future U.S. workforce.

Eric Bettinger, associate professor for education and economics at Stanford University, has used data from Ohio to analyze students’ choices of majors and how those decisions change over the course of a two-year and four-year education (Bettinger, 2010). His data are from the 1998–1999 cohort of incoming students, which allowed him to follow their choices in subsequent years, and the data focus solely on students who took the ACT exam, which is the exam taken by most college-bound students in Ohio. Students who take that exam indicate the major they would like to

Suggested Citation:"3 The Loss of Students from STEM Majors." National Academy of Engineering and National Research Council. 2012. Community Colleges in the Evolving STEM Education Landscape: Summary of a Summit. Washington, DC: The National Academies Press. doi: 10.17226/13399.
×

pursue, and the exam results allow high-ability students to be identified and analyzed separately.

In a total sample of 18,000 students, 8.0 percent and 11.7 percent indicated an interest in the biological or physical sciences and engineering, respectively. Bettinger found, in an analysis conducted for the summit, that these numbers were somewhat lower for the students who attended two-year colleges—5.5 percent and 9.4 percent. In contrast, the percentages were higher for students with high ACT scores (above 24)—11.7 percent and 18.0 percent. The students at two-year institutions had somewhat lower average ACT scores than the average for all students, but in broad terms their aspirations and characteristics were similar, Bettinger said.

STUDENTS WHO LEAVE AND ENTER STEM MAJORS

A “depressing” number of students abandon STEM majors, Bettinger observed. Among all students who declared an intention to pursue a STEM major, only 43 percent were still in a STEM field at the time of their last enrollment, with the rest moving to other majors by the time of their last enrollment.

The numbers were far worse for two-year students. Only 14 percent of the students at two-year colleges who intended to major in a STEM field when they took the ACT exam were still in a STEM field at the time of their last enrollment. “This defection rate is extremely high,” said Bettinger.

Almost one-half of all students who leave STEM majors switch to business majors (48.7%). Other popular majors for students who switch are the social sciences (21.2%) and education (11.1%). Among two-year switchers, about 30 percent switch to business majors, and slightly less than one-quarter each go to social science and education majors.

Meanwhile, very few students who did not intend to major in a STEM subject converted to a STEM major. Only 5.5 percent of STEM majors for students at all institutions, and only 3.4 percent for two-year students, were converts to STEM from a non-STEM major.

WHY DO STUDENTS LEAVE STEM MAJORS?

Bettinger listed five possible reasons for the relative lack of U.S. students pursuing STEM majors in two-year and four-year institutions:

1. At the end of secondary school, few are prepared to enter STEM fields.

2. Few express initial interest in entering STEM fields.

Suggested Citation:"3 The Loss of Students from STEM Majors." National Academy of Engineering and National Research Council. 2012. Community Colleges in the Evolving STEM Education Landscape: Summary of a Summit. Washington, DC: The National Academies Press. doi: 10.17226/13399.
×

3. Once students are off the STEM pathway, they cannot get back on it.

4. The culture of STEM fields is off-putting once higher education is reached.

5. The returns are insufficiently high to justify greater adherence to STEM fields.

He noted that his data are best suited to explore the last three of these explanations. Students started switching away from STEM majors in their very first semester, and the students most likely to leave STEM majors were the ones who took fewer STEM courses their first semester rather than more courses. Students who took more than 40 percent of their courses in STEM their first semester were much less likely to leave the major than students who took less than 40 percent of their courses in STEM fields. This observation holds for students in four-year colleges, students in two-year colleges, and high-ability students.

The relatively small number of students who converted to STEM majors also took relatively few STEM courses their first semester. This piece of evidence is “suggestive,” said Bettinger, that there might be some way of getting more non-STEM majors interested in those subjects—for example, by examining more closely the structure and conduct of introductory courses in STEM. However, STEM majors have extensive course requirements, and many courses typically must be taken in a particular order (that is, they have extensive prerequisites compared with other disciplines), which can make it difficult to switch into these majors.

The students who left STEM were just as likely to pass their initial STEM courses, so the difficulty of the courses did not seem to be the deciding factor. But the course demands of STEM majors are high and require commitment—even though, as Bettinger observed, some of the majors to which students switch, such as education, also have extensive course requirements, even if they are not as sequential as those for STEM majors.

THE CULTURE OF STEM FIELDS

Bettinger’s data also show that women were significantly less likely to stay in STEM fields, even among the top students, which suggests that the culture of STEM might have been a factor in their decisions. However, since the female students took STEM courses in high school and still expressed an interest in majoring in those subjects, the cultural problems would need to start or intensify in college for this explanation to hold.

According to Bettinger’s research, black students in four-year colleges were less likely to defect from STEM majors than other students, espe-

Suggested Citation:"3 The Loss of Students from STEM Majors." National Academy of Engineering and National Research Council. 2012. Community Colleges in the Evolving STEM Education Landscape: Summary of a Summit. Washington, DC: The National Academies Press. doi: 10.17226/13399.
×

cially among the top black students. However, that was not true at twoyear colleges, where there were no statistical differences between black students and other students. Bettinger did not analyze the differences in these indicators between men and women or between domestic and international students, though both of these factors could influence the results.

EARNINGS FROM MAJORS

One factor in students’ decisions about majors is the amount of money they potentially could earn after graduation. About three-quarters of college students respond in surveys that an important objective of a college education is to be “well off financially” (Pryor et al., 2011), and colleges have an increased focus on vocational offerings, particularly at two-year colleges.

The data suggest that students who switch to a non-STEM major could have been making a calculated decision about where the financial return to a major might be higher than with a STEM major, Bettinger said. For example, women’s earnings in business and in other fields were higher than they were in STEM fields at the time these data were gathered, though men’s earnings in STEM fields, business, and the social sciences were roughly the same.

High average earnings indicate similarly high levels of demand for workers, and superstar earnings indicate a demand for a large pool of professionals to produce a small number of superstars. For example, computer science, which is a field with obvious earnings growth and superstar earnings, was experiencing a substantial growth in majors at the time the data were gathered, Bettinger noted.

DISCUSSION

During one of the discussion periods at the summit, Catherine Didion from the National Academy of Engineering pointed out that underrepresented students and women are interested in giving back to their communities but often do not see STEM fields as occupations that enable them to do so. Additional investigations could indicate why so many of these students switch into non-STEM fields.

Martha Kanter, under secretary at the U.S. Department of Education, emphasized the importance of mentors and advisers in keeping students on track. Many students take courses they do not need, or they have unclear pathways. Students need sophisticated and knowledgeable advice. “Students get lost in the system,” said Kanter. “We have to use technology and people to keep them in the system and keep them highly motivated to succeed.”

Suggested Citation:"3 The Loss of Students from STEM Majors." National Academy of Engineering and National Research Council. 2012. Community Colleges in the Evolving STEM Education Landscape: Summary of a Summit. Washington, DC: The National Academies Press. doi: 10.17226/13399.
×
Page 19
Suggested Citation:"3 The Loss of Students from STEM Majors." National Academy of Engineering and National Research Council. 2012. Community Colleges in the Evolving STEM Education Landscape: Summary of a Summit. Washington, DC: The National Academies Press. doi: 10.17226/13399.
×
Page 20
Suggested Citation:"3 The Loss of Students from STEM Majors." National Academy of Engineering and National Research Council. 2012. Community Colleges in the Evolving STEM Education Landscape: Summary of a Summit. Washington, DC: The National Academies Press. doi: 10.17226/13399.
×
Page 21
Suggested Citation:"3 The Loss of Students from STEM Majors." National Academy of Engineering and National Research Council. 2012. Community Colleges in the Evolving STEM Education Landscape: Summary of a Summit. Washington, DC: The National Academies Press. doi: 10.17226/13399.
×
Page 22
Next: 4 Outreach, Recruitment, and Mentoring »
Community Colleges in the Evolving STEM Education Landscape: Summary of a Summit Get This Book
×
 Community Colleges in the Evolving STEM Education Landscape: Summary of a Summit
Buy Paperback | $41.00 Buy Ebook | $32.99
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

The National Research Council (NRC) and National Academy of Engineering (NAE) have released a new report, Community Colleges in the Evolving STEM Education Landscape: Summary of a Summit. Based on a national summit that was supported by the National Science Foundation and organized by the NRC and the NAE, the report highlights the importance of community colleges, especially in emerging areas of STEM (Sciene, Technology, Engineering, and Mathematics) and preparation of the STEM workforce.

Community colleges are also essential in accommodating growing numbers of students and in retraining displaced workers in skills needed in the new economy. Community Colleges in the Evolving STEM Education Landscape: Summary of a Summit looks at the changing and evolving relationships between community colleges and four-year institutions, with a focus on partnerships and articulation processes that can facilitate student success in STEM; expanding participation of students from historically underrepresented populations in undergraduate STEM education; and how subjects, such as mathematics, can serve as gateways or barriers to college completion.

READ FREE ONLINE

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    Switch between the Original Pages, where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

    « Back Next »
  6. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  7. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  8. ×

    View our suggested citation for this chapter.

    « Back Next »
  9. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!