tions of students who enroll in two-year college mathematics. More information is needed about how diverse learners, especially women and minorities, experience their two-year mathematics courses (pre-college and college level) and how these experiences influence their subsequent enrollment, completion, and career decisions related to STEM.

Engage practitioners in action research on mathematics education to facilitate the adoption and scale-up of innovation. Two-year faculty would benefit from opportunities to engage in action research that helps them to understand how various pedagogical and assessment strategies impact the learning of diverse students, and then employ these strategies in their classrooms.


There is wide consensus that mastery of mathematics is essential to progressing into and through STEM programs of study, yet many students are unsuccessful at navigating the normative mathematics course sequence (Cullinane and Treisman, 2010) that is fundamental to their advancement into STEM-related careers. Recent concerns about international competition and the struggling economy have focused attention on this important issue and renewed concerns about the challenges that many students, particularly women and minorities, face succeeding in mathematics coursework (National Academy of Sciences, National Academy of Engineering, and Institute of Medicine, 2010). Resolving this problem is an urgent priority if the nation is to see growth in student enrollment and success in STEM programs of study, placement of graduates in STEM-related careers, and rejuvenation of the nation’s economy.

This paper examines the influence of the two-year mathematics curriculum on students’ progression into and through STEM programs by drawing upon extant literature, materials on the Internet, and personal communication with two-year college mathematics experts and practitioners. It acknowledges the expansive developmental mathematics curriculum offered by two-year colleges, but even more importantly, provides insights into college-level mathematics that has been overshadowed by a preoccupation with developmental education. The paper begins with a brief historical perspective and then proceeds to address such questions as: what is the status of two-year mathematics courses, who teaches them, and how are they taught? What standards-based reforms are associated with two-year college mathematics, what curricular and pedagogical innovations are capturing the attention of mathematics reformers, and what do we know about the impact of these reforms on student success? This paper concludes with recommendations for future research, policy, and practice on two-year college mathematics that is intended to enhance

The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement