69. The decimal reduction factor, D10, is defined as the exposure—e.g., to heat or radiation—required to reduce the microbial population to one-tenth of its initial number. D10 values are measured experimentally and quoted values apply only to the exact conditions under which they are measured. The exposure may be quoted in terms of the time subjected to heat at a particular temperature or to the total absorbed radiation dose. Thus D10 values are frequently quoted in minutes (when determined by heating) or in grey (when determined by exposure to ionizing radiation).

70. D. Slade and M. Radman, Oxidative stress resistance in Deinococcus radiodurans, Microbiology and Molecular Biology Reviews 75:133-191, 2011.

71. R.C. Richmond, R. Sridhar, and M.J. Daly, Physicochemical survival pattern for the radiophile Deinococcus radiodurans: A polyextremophile model for life on Mars, SPIE 3755:210-222, 1999.

72. L.R. Dartnell, S.J. Hunter, K.V. Lovell, A.J. Coates, and J.M. Ward, Low-temperature ionizing radiation resistance of Deinococcus radiodurans and Antarctic Dry Valley bacteria, Astrobiology 10:717-732, 2010.

73. D. Ghosal, M.V. Omelchenko, E.K. Gaidamakova, V.Y. Matrosova, A. Vasilenko, A. Venkateswaran, H.M. Kostandarithes, H. Brim, K.S. Makarova, L.P. Wackett, J.K. Fredrickson, and M.J. Daly, How radiation kills cells: Survival of Deinococcus radiodurans and Shewanella oneidensis under oxidative stress, FEMS Microbiology Reviews 29:361-375, 2005.

74. A.C. Granger, E.K. Gaidamakova, V.Y. Matrosova, M.J. Daly, and P. Setlow, Effects of Mn and Fe levels on Bacillus subtilis spore resistance and effects of Mn2+, other divalent cations, orthophosphate, and dipicolinic acid on protein resistance to ionizing radiation, Applied and Environmental Microbiology 77:32-40, 2011.

75. S. Ghosh, A. Ramirez-Peralta, E. Gaidamakova, P. Zhang, Y.Q. Li, M.J. Daly, and P. Setlow, Effects of Mn levels on resistance of Bacillus megaterium spores to heat, radiation and hydrogen peroxide, Journal of Applied Microbiology 111(3):663-670, 2011.

76. J. DiRuggiero, N. Santangelo, Z. Nackerdien, J. Ravel, and F.T. Robb, Repair of extensive ionizing-radiation DNA damage at 95°C in the hyperthermophilic archaeon Pyrococcus furiosus, Journal of Bacteriology 179:4643-4645, 1997.

77. M. Kottemann, A. Kish, C. Iloanusi, S. Bjork, and J. DiRuggiero, Physiological responses of the halophilic archaeon Halobacterium sp. strain NRC1 to desiccation and gamma irradiation, Extremophiles 9:219-227, 2005.

78. J. DiRuggiero, N. Santangelo, Z. Nackerdien, J. Ravel, and F.T. Robb, Repair of extensive ionizing-radiation DNA damage at 95°C in the hyperthermophilic archaeon Pyrococcus furiosus, Journal of Bacteriology 179:4643-4645, 1997.

79. M. Kottemann, A. Kish, C. Iloanusi, S. Bjork, and J. DiRuggiero, Physiological responses of the halophilic archaeon Halobacterium sp. strain NRC1 to desiccation and gamma irradiation, Extremophiles 9:219-227, 2005.

80. R.C. Richmond, R. Sridhar, and M.J. Daly, Physicochemical survival pattern for the radiophile Deinococcus radiodurans: A polyextremophile model for life on Mars, SPIE 3755:210-222, 1999.

81. J. DiRuggiero, N. Santangelo, Z. Nackerdien, J. Ravel, and F.T. Robb, Repair of extensive ionizing-radiation DNA damage at 95°C in the hyperthermophilic archaeon Pyrococcus furiosus, Journal of Bacteriology 179:4643-4645, 1997.

82. M. Kottemann, A. Kish, C. Iloanusi, S. Bjork, and J. DiRuggiero, Physiological responses of the halophilic archaeon Halobacterium sp. strain NRC1 to desiccation and gamma irradiation, Extremophiles 9:219-227, 2005.

83. A.C. Granger, E.K. Gaidamakova, V.Y. Matrosova, M.J. Daly, and P. Setlow, Effects of Mn and Fe levels on Bacillus subtilis spore resistance and effects of Mn2+, other divalent cations, orthophosphate, and dipicolinic acid on protein resistance to ionizing radiation, Applied and Environmental Microbiology 77:32-40, 2011.

84. S. Ghosh, A. Ramirez-Peralta, E. Gaidamakova, P. Zhang, Y.Q. Li, M.J. Daly, and P. Setlow, Effects of Mn levels on resistance of Bacillus megaterium spores to heat, radiation and hydrogen peroxide, Journal of Applied Microbiology 111(3):663-670, 2011.

85. D. Ghosal, M.V. Omelchenko, E.K. Gaidamakova, V.Y. Matrosova, A. Vasilenko, A. Venkateswaran, H.M. Kostandarithes, H. Brim, K.S. Makarova, L.P. Wackett, J.K. Fredrickson, and M.J. Daly, How radiation kills cells: Survival of Deinococcus radiodurans and Shewanella oneidensis under oxidative stress, FEMS Microbiology Reviews 29:361-375, 2005.

86. A.J. Auman, J.L. Breezee, J.J. Gosink, P. Kämpfer, and J.T. Staley, Psychromonas ingrahamii sp. nov., a novel gas vacuolate, psychrophilic bacterium isolated from Arctic polar sea ice, International Journal of Systemics and Evolutionary Microbiology 56:1001-1007, 2006.

87. J. Breeze, N. Cady, and J.T. Staley, Subfreezing growth of the sea ice bacterium Psychromonas ingrahamii, Microbial Ecology 47:300-304, 2004.

88. P. Amato and B.C. Christner, Energy metabolism response to low-temperature and frozen conditions in Psychrobacter cryohalolentis, Applied Environmental Microbiology 75:711-718, 2009.

89. B.C. Christner, Incorporation of DNA and protein precursors into macromolecules by bacteria at –15 degrees C, Applied and Environmental Microbiology 68:6435-6438, 2002.

90. See, for example, R.D. Haight and R.Y. Morita, Thermally induced leakage from Vibrio marinus an obligately psychrophilic marine bacterium, Journal of Bacteriology 92:1388-1393, 1966.



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement