COMPUTING RESEARCH
FOR SUSTAINABILITY







Lynette I. Millett and Deborah L. Estrin, Editors

Committee on Computing Research for
Environmental and Societal Sustainability

Computer Science and Telecommunications Board

Division on Engineering and Physical Sciences

NATIONAL RESEARCH COUNCIL
OF THE NATIONAL ACADEMIES




THE NATIONAL ACADEMIES PRESS
Washington, DC.
www.nap.edu



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement



Below are the first 10 and last 10 pages of uncorrected machine-read text (when available) of this chapter, followed by the top 30 algorithmically extracted key phrases from the chapter as a whole.
Intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text on the opening pages of each chapter. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

Do not use for reproduction, copying, pasting, or reading; exclusively for search engines.

OCR for page R1
COMPUTING RESEARCH FOR SUSTAINABILITY Lynette I. Millett and Deborah L. Estrin, Editors Committee on Computing Research for Environmental and Societal Sustainability Computer Science and Telecommunications Board Division on Engineering and Physical Sciences

OCR for page R1
THE NATIONAL ACADEMIES PRESS  500 Fifth Street, NW  Washington, DC 20001 NOTICE: The project that is the subject of this report was approved by the Gov- erning Board of the National Research Council, whose members are drawn from the councils of the National Academy of Sciences, the National Academy of Engi- neering, and the Institute of Medicine. The members of the committee responsible for the report were chosen for their special competences and with regard for appropriate balance. Support for this project was provided by the National Science Foundation under award 115-0950451. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the authors and do not necessarily reflect the views of the organization that provided support for the project. International Standard Book Number-13: 978-0-309-25758-9 International Standard Book Number-10: 0-309-25758-1 Copies of this report are available from: The National Academies Press 500 Fifth Street, NW, Keck 360 Washington, DC 20001 (800) 624-6242 or (202) 334-3313 http://www.nap.edu Copyright 2012 by the National Academy of Sciences. All rights reserved. Printed in the United States of America

OCR for page R1
The National Academy of Sciences is a private, nonprofit, self-perpetuating society of distinguished scholars engaged in scientific and engineering research, dedicated to the furtherance of science and technology and to their use for the general welfare. Upon the authority of the charter granted to it by the Congress in 1863, the Academy has a mandate that requires it to advise the federal govern- ment on scientific and technical matters. Dr. Ralph J. Cicerone is president of the National Academy of Sciences. The National Academy of Engineering was established in 1964, under the charter of the National Academy of Sciences, as a parallel organization of outstanding engineers. It is autonomous in its administration and in the selection of its mem- bers, sharing with the National Academy of Sciences the responsibility for advis- ing the federal government. The National Academy of Engineering also sponsors engineering programs aimed at meeting national needs, encourages education and research, and recognizes the superior achievements of engineers. Dr. Charles M. Vest is president of the National Academy of Engineering. The Institute of Medicine was established in 1970 by the National Academy of Sciences to secure the services of eminent members of appropriate professions in the examination of policy matters pertaining to the health of the public. The Institute acts under the responsibility given to the National Academy of Sciences by its congressional charter to be an adviser to the federal government and, upon its own initiative, to identify issues of medical care, research, and education. Dr. Harvey V. Fineberg is president of the Institute of Medicine. The National Research Council was organized by the National Academy of Sciences in 1916 to associate the broad community of science and technology with the Academy’s purposes of furthering knowledge and advising the federal government. Functioning in accordance with general policies determined by the Academy, the Council has become the principal operating agency of both the National Academy of Sciences and the National Academy of Engineering in pro- viding services to the government, the public, and the scientific and engineering communities. The Council is administered jointly by both Academies and the Institute of Medicine. Dr. Ralph J. Cicerone and Dr. Charles M. Vest are chair and vice chair, respectively, of the National Research Council. www.national-academies.org

OCR for page R1

OCR for page R1
COMMITTEE ON COMPUTING RESEARCH FOR ENVIRONMENTAL AND SOCIETAL SUSTAINABILITY DEBORAH L. ESTRIN, University of California, Los Angeles, Chair ALAN BORNING, University of Washington DAVID CULLER, University of California, Berkeley THOMAS DIETTERICH, Oregon State University DANIEL KAMMEN, University of California, Berkeley JENNIFER MANKOFF, Carnegie Mellon University ROGER D. PENG, Johns Hopkins Bloomberg School of Public Health ANDREAS VOGEL, SAP Labs Staff LYNETTE I. MILLETT, Senior Program Officer VIRGINIA BACON TALATI, Associate Program Officer SHENAE BRADLEY, Senior Program Assistant v

OCR for page R1
COMPUTER SCIENCE AND TELECOMMUNICATIONS BOARD ROBERT F. SPROULL, Oracle (retired), Chair PRITHVIRAJ BANERJEE, ABB STEVEN M. BELLOVIN, Columbia University JACK L. GOLDSMITH III, Harvard Law School SEYMOUR E. GOODMAN, Georgia Institute of Technology JON M. KLEINBERG, Cornell University ROBERT KRAUT, Carnegie Mellon University SUSAN LANDAU, Radcliffe Institute for Advanced Study PETER LEE, Microsoft Corporation DAVID LIDDLE, U.S. Venture Partners DAVID E. SHAW, D.E. Shaw Research ALFRED Z. SPECTOR, Google, Inc. JOHN STANKOVIC, University of Virginia JOHN SWAINSON, Silver Lake Partners PETER SZOLOVITS, Massachusetts Institute of Technology PETER J. WEINBERGER, Google, Inc. ERNEST J. WILSON, University of Southern California KATHERINE YELICK, University of California, Berkeley Staff JON EISENBERG, Director RENEE HAWKINS, Financial and Administrative Manager HERBERT S. LIN, Chief Scientist LYNETTE I. MILLETT, Senior Program Officer EMILY ANN MEYER, Program Officer VIRGINIA BACON TALATI, Associate Program Officer ENITA A. WILLIAMS, Associate Program Officer SHENAE BRADLEY, Senior Program Assistant ERIC WHITAKER, Senior Program Assistant For more information on CSTB, see its web site at http://www.cstb.org, write to CSTB, National Research Council, 500 Fifth Street, NW, Washing- ton, DC 20001, call (202) 334-2605, or e‑mail the CSTB at cstb@nas.edu. vi

OCR for page R1
Preface Computer science and information technologies offer a wide range of tools for examining sustainability challenges. Advances in computer science have already provided environmental and sustainability research- ers with a valuable tool set—computational modeling, data management, sensor technology, machine learning, and other tools—and additional research in computer science may provide advanced approaches, tools, techniques, and strategies toward understanding, addressing, and com- municating sustainability challenges. The present study emerged from an informal request to the National Research Council’s Computer Science and Telecommunications Board (CSTB) from the Directorate for Computer and Information Science and Engineering, National Science Foundation (NSF). The project was funded by the National Science Foundation. The statement of task for the Com- mittee on Computing Research for Environmental and Societal Sustain- ability, established by the National Research Council to carry out this study, is as follows: Computing has many potential “green” applications including improv- ing energy conservation, enhancing energy management, reducing car- bon emissions in many sectors, improving environmental protection (including mitigation and adaptation to climate change), and increasing awareness of environmental challenges and responses. An ad hoc com- mittee would plan and conduct a public workshop to survey sustainabil- ity challenges, current research initiatives, results from previously-held topical workshops, and related industry and government development vii

OCR for page R1
viii PREFACE efforts in these areas. The workshop would feature invited presentations and discussions that explore research themes and specific research op- portunities that could advance sustainability objectives and also result in advances in computer science and consider research modalities, with a focus on applicable computational techniques and long-term research that might be supported by the National Science Foundation, and with an emphasis on problem- or user-driven research.     The committee would obtain additional inputs through briefings to the committee and solicitations of comments and white papers from the research community. It would use additional deliberative meetings of the committee to develop a consensus report identifying promising research opportunities, cataloging applicable computational techniques, laying out an overall framework for “green” computing research, and recommending long-term research objectives and directions. The com- mittee’s consensus report will include a summary of the workshop as an appendix. The committee reviewed current efforts underway in industry (and other opportunities for the immediate application of existing information technology) and explored research themes and specific research oppor- tunities that could advance sustainability (energy and environmental) objectives and also result in advances in computer science. The committee considered research modalities, with a focus on applicable computational techniques and long-term research. The report, which includes as Appendix A the summary of the Work- shop on Innovation in Computing and Information Technology for Sus- tainability, identifies promising research opportunities, catalogs applicable computational techniques, lays out an overall framework for computing research for sustainability, and recommends long-term research objectives and directions. Chapter 1 provides examples of domains of potential impact, Chapter 2 describes methods and approaches, and Chapter 3, which is aimed primarily at computer science researchers, articulates why the interplay between addressing sustainability challenges and computer science research merits attention. Meeting these challenges will involve advances in a number of com- puting research areas, including the following: scalability; robustness; reliability; real-time observation and processing; low-power computing, and sensing and actuation; and human interaction with the environment, observations, and feedback systems. A number of specific areas of com- puter science and topics addressed in current research programs of NSF’s Directorate for Computer and Information Science and Engineering are relevant. This report represents the cooperative effort of many people. The members of the study committee, after substantial discussions, drafted

OCR for page R1
PREFACE ix and worked through several revisions of the report. The committee would like to thank Jeannette Wing, Sampath Kannan, and Douglas Fisher for their encouragement and support of this study. The committee also appre- ciates the insights and perspective provided by the following experts who presented briefings: Adjo Amekudzi, Georgia Institute of Technology, Peter Bajcsy, National Institute of Standards and Technology, Eli Blevis, Indiana University, Bloomington, David Brown, Duke University, Randal Bryant, Carnegie Mellon University, David Douglas, National Ecological Observatory, John Doyle, California Institute of Technology, Chris Forest, Pennsylvania State University, Thomas Harmon, University of California, Merced, Neo Martinez, Pacific Ecoinformatics and Computational Ecology Lab, Vijay Modi, Columbia University, Shwetak Patel, University of Washington, Robert Pfahl, International Electronics Manufacturing Initiative, David Shmoys, Cornell University, and Bill Tomlinson, University of California, Irvine. Finally, I thank CSTB staff members Lynette Millett and Virginia Bacon Talati for their efforts in steering the committee’s work, coordinat- ing the meetings and speakers, and drafting, editing, and revising report material. Deborah L. Estrin, Chair Committee on Computing Research for Environmental and Societal Sustainability

OCR for page R1
Acknowledgment of Reviewers This report has been reviewed in draft form by individuals chosen for their diverse perspectives and technical expertise, in accordance with procedures approved by the National Research Council’s Report Review Committee. The purpose of this independent review is to provide candid and critical comments that will assist the institution in making its pub- lished report as sound as possible and to ensure that the report meets institutional standards for objectivity, evidence, and responsiveness to the study charge. The review comments and draft manuscript remain confidential to protect the integrity of the deliberative process. We wish to thank the following individuals for their review of this report: Alice Agogino, University of California, Berkeley, Ruzena Bajcsy, University of California, Berkeley, Jeff Dozier, University of California, Santa Barbara, Brian Gaucher, T.J. Watson Research Center, IBM, Roger Ghanem, University of Southern California, Marija Ilic, Carnegie Mellon University, David Shmoys, Cornell University, and Bill Tomlinson, University of California, Irvine. Although the reviewers listed above have provided many construc- tive comments and suggestions, they were not asked to endorse the con- clusions or recommendations, nor did they see the final draft of the report before its release. The review of this report was overseen by Katharine x

OCR for page R1
ACKNOWLEDGMENT OF REVIEWERS xi Frase, IBM. Appointed by the National Research Council, she was respon- sible for making certain that an independent examination of this report was carried out in accordance with institutional procedures and that all review comments were carefully considered. Responsibility for the final content of this report rests entirely with the authoring committee and the institution.

OCR for page R1

OCR for page R1
Contents SUMMARY 1 Relevance of Information Technology and Computer Science to Sustainability, 2 The Value of the Computer Science Approach to Problem Solving, 5 Systems—Scale, Heterogeneity, Interconnection, Optimization, and Human Interaction, 5 Iteration, 6 Computer Science Research Areas, 7 Strategy and Pragmatic Approaches, 9 Emphasize Bottom-Up Approaches and Concreteness, 9 Use Appropriate Evaluation Criteria for Proposals and Results, 9 Apply CS Philosophy and Approach, 10 Foster Sustainability Research Through Funding Initiatives, 10 Foster Needed Multidisciplinary Approaches, 11 Blend Sustainability and Education, 12 xiii

OCR for page R1
xiv CONTENTS 1 ROLES AND OPPORTUNITIES FOR INFORMATION 13 TECHNOLOGY IN MEETING SUSTAINABILITY CHALLENGES Opportunities to Achieve Significant Sustainability Objectives, 17 Built Infrastructure and Systems, 18 Ecosystems and the Environment, 20 Sociotechnical Systems, 21 Illustrative Examples in Information Technology and Sustainability, 22 Toward a Smarter Electric Grid, 23 Sustainable Food Systems, 36 Sustainable and Resilient Infrastructures, 44 Conclusion, 50 2 ELEMENTS OF A COMPUTER SCIENCE RESEARCH 51 AGENDA FOR SUSTAINABILITY Measurement and Instrumentation, 55 Coping with Self-Defining Physical Information, 57 The Design and Capacity Planning of Physical Information Services, 59 Software Stacks for Physical Infrastructures, 60 Information-Intensive Systems, 61 Big Data, 62 Heterogeneity of Data, 63 Coping with the Need for Data Proxies, 64 Coping with Biased, Noisy Data, 65 Coping with Multisource Data Streams, 66 Analysis, Modeling, Simulation, and Optimization, 70 Developing and Using Multiscale Models, 70 Combining Statistical and Mechanistic Models, 71 Decision Making Under Uncertainty, 72 Human-Centered Systems, 77 Supporting Deliberation, Civic Engagement, Education, and Community Action, 79 Design for Sustainability, 81 Human Understanding of Sensing, Modeling, and Simulation, 82 Tools to Help Organizations and Individuals Engage in More Sustainable Behavior, 82 Mitigation, Adaption, and Disaster Response, 83 Using Information from Resource-Usage Sensing, 83 Conclusion, 85

OCR for page R1
CONTENTS xv 3 PROGRAMMATIC AND INSTITUTIONAL 86 OPPORTUNITIES TO ENHANCE COMPUTER SCIENCE RESEARCH FOR SUSTAINABILITY Computer Science Approaches for Addressing Sustainability, 87 Toward Universality, 93 Education and Programmatics, 96 Evaluation, Viability, and Impact Analysis, 100 Conclusion, 103 APPENDIXES A Summary of a Workshop on Innovation in Computing and 107 Information Technology for Sustainability B Biographies of Committee Members and Staff 149

OCR for page R1