factors. A research challenge is to develop indicators of community resilience in the face of such events.52 These might include the percentage of electrical energy generated locally (or that could be generated locally if need be), the redundancy of the transportation system and the food supply chain and their ability to cope with a sharp increase in fuel prices or even rationing, the ability to cope with sea-level rise (if relevant), the ability to walk to the most significant destinations if need be, the availability of food produced nearby, and so forth. These indicators need to be accepted by decision makers and the community to be useful in the political process. More abstract and much more difficult, if not impossible, to incorporate into a predictive model (but nevertheless important) are the civic capital and connectedness of the community.

IT Infrastructure Improvements Large disasters upset physical infrastructure, such as the electric grid, transportation, and health care—as well as IT systems. IT infrastructures themselves need to be more resilient; IT can also improve the survivability and can speed the recovery of other infrastructure by providing better information about the status of systems and advance warning of impending failures. Finally, IT can facilitate the continuity of disrupted societal functions by providing new tools for reconnecting families, friends, organizations, and communities.


IT and computer science could have a major impact in a wide diversity of sustainability challenges. The examples above illustrate some of the efforts that are needed. Individual problems are highly multidimensional, requiring innovation in different areas of computing as well as deep domain knowledge.

FINDING: Although sustainability covers a broad range of domains, most sustainability issues share challenges of architecture, scale, heterogeneity, interconnection, optimization, and human interaction with systems, each of which is also a problem central to CS research.

The next chapter explores more specifically the potential for computing and IT research and innovation to help address these challenges.


52An example of this is the Climate Change Habitability Index. For a description, see Yue Pan, Chit Meng Cheong, and Eli Blevis, The Climate Change Habitability Index, Interactions 17(6):29-33 (2010).

The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement