groups. A resource it can use to develop such trials is the set of institutions that have received Clinical and Translational Science Awards, which represents 60 of the best academic medical centers in the country networked together to do human subjects research across a range of diseases. The second example she mentioned is NCATS’s project in drug repurposing— described in the previous chapter—which is seeking to find beneficial compounds with known safety profiles that companies have abandoned, with all of the work done under a set of pre-negotiated three-way agreements with the pharmaceutical companies, academic universities, and the NIH. This will alleviate some of the barriers to entering into a formal agreement and speed the process of setting up the initiative. Finally, NCATS is working with FDA and the Defense Advanced Research Projects Agency (DARPA) to develop a chip that will closely mimic the physiological behavior of normal tissues. The goal is to develop a validated tool that companies and academic medical centers can use to test the responses of tissues to specific compounds, allowing compounds to be tested in vitro before testing them in humans.

NCATS is taking a DARPA-like approach to the drug repurposing and “tissue on a chip” projects. Both will be milestone-driven with funding removed if goals are not met.


The evolving landscape of genomics creates a tantalizing opportunity to bring forward medicines that are more effective because of the ability to identify patients for whom a particular drug will work best or have the least downside risk, Dunsire said. However, data are not always available to truly select therapies as a routine. Establishing biorepositories, databases, patient registries, and other information resources will allow drugs to be reevaluated as new information is derived. Examples like the collaboration between Millennium Pharmaceuticals and the Multiple Myeloma Research Foundation on the latter’s Personalized Medicine Initiative discussed in Chapter 5 show what is possible, Dunsire said. Patients with the same genetic condition can be targeted, and patients with other mutations can be encouraged to participate in different trials. Patients can donate specimens and data at diagnosis and throughout the progression of their disease. In this case, a patient advocacy organization is driving inclusion, but other mechanisms could be equally or more effective.

Hamburg noted that a wide variety of information, including that derived from registries, could be used in both prospective and retrospective analyses. Reports of adverse effects, information about existing clinical trial networks, and identified potential patient populations all could be valuable resources. “All of these things make us better positioned to ask and answer critical questions in a timely and cost-effective way and strengthen the

The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement