committee relied on peer-reviewed papers; reports produced by government agencies and other interested parties; and documents filed as part of regulatory activities, including patent applications and environmental-impact assessments. In addition, the committee gathered information through presentations at open committee meetings from government agencies, companies, and others involved in the algal biofuel supply chain, researchers from academia, and other groups. The information gathered at these public meetings was augmented by public webinars and solicitation of information from algal biofuel companies. The information gathered during these activities helped form the basis for the description of the algal biofuel supply chain, resource requirements, and impacts discussed in subsequent chapters. In analyzing this information, the committee relied on the methods described earlier.

1.5 STRUCTURE OF REPORT

The report addresses the statement of task in the following ways. Chapter 2 provides an overview of algal biofuel supply chain and examples of different cultivation, harvesting, dewatering, processing, and coproduction methods that could be used in producing algal biofuels. Chapter 3 introduces selected algal biofuel production systems as examples to illustrate challenges and sustainability concerns of algal biofuel production and possible tradeoffs among sustainability goals. Chapters 4 and 5 discuss potential concerns related to resource use (for example, availability of land, water, and nutrient resources) and environmental effects and how some of those concerns might affect social acceptability of algal biofuels, respectively. For each category of resource use and environmental effect, indicators and metrics to be employed and data to be collected to assess sustainability are suggested. Chapter 6 summarizes the sustainability challenges for each of the selected algal biofuel production systems introduced in Chapter 3 and uses them to illustrate benefits and tradeoffs of each system.

REFERENCES

Azapagic, A., and S. Perdan. 2000. Indicators of sustainable development for industry: A general framework. Process Safety and Environmental Protection 78(4):243-261.

Baumann, H., and A.M. Tillman. 2004. The Hitch Hikers Guide to LCA. Lund, Sweden: Studentlitteratur AB.

Benemann, J.R., R.P. Goebel, J.C. Weissman, and D.C. Augenstein. 1982. Microalgae as a Source of Liquid Fuels. Fairfield, CA: EnBio, Inc.

Bhatnagar, A., M. Bhatnagar, S. Chinnasamy, and K.C. Das. 2010. Chlorella minutissima—A promising fuel alga for cultivation in municipal wastewaters. Applied Biochemistry and Biotechnology 161(1-8):523-536.

Brune, D.E., T.J. Lundquist, and J.R. Benemann. 2009. Microalgal biomass for greenhouse gas reductions: Potential for replacement of fossil fuels and animal feeds. Journal of Environmental Engineering-ASCE 135(11):1136-1144.

Bullard, C.W., and R.A. Herendeen. 1975. Energy cost of goods and services. Energy Policy 3(4):268-278.

Bullard, C., P. Pennter, and D. Pilati. 1978. Net energy analysis: Handbook for combining process and input-output analysis. Resources and Energy 1:267-313.

Chermack, T.J., S.A. Lynham, and W.E.A. Ruona. 2001. A review of scenario planning literature. Available online at http://www.cse.buffalo.edu/~peter/refs/DataAssimilation/Multihypothesis/ReviewofSP.PDF. Accessed June 18, 2012.

Chinnasamy, S., A. Bhatnagar, R.W. Hunt, and K.C. Das. 2010. Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications. Bioresource Technology 101(9):3097-3105.

Corbière-Nicollier, T., I. Blanc, and S. Erkman. 2011. Towards a global criteria based framework for the sustainability assessment of bioethanol supply chains. Application to the Swiss dilemma: Is local produced bioethanol more sustainable than bioethanol imported from Brazil? Ecological Indicators 11:1447-1458.

Craggs, R.J., S. Heubeck, T.J. Lundquist, and J.R. Benemann. 2011. Algal biofuels from wastewater treatment high rate algal ponds. Water Science and Technology 63(4):660-665.



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement